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Abstract
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Regression is a fundamental machine learning task with many important applications within
computer vision and other domains. In general, it entails predicting continuous targets from
given inputs. Deep learning has become the dominant paradigm within machine learning in
recent years, and a wide variety of different techniques have been employed to solve regression
problems using deep models. There is however no broad consensus on how deep regression
models should be constructed for best possible accuracy, or how the uncertainty in their
predictions should be represented and estimated.

These open questions are studied in this thesis, aiming to help take steps towards an ultimate
goal of developing deep regression models which are both accurate and reliable enough for real-
world deployment within medical applications and other safety-critical domains.

The first main contribution of the thesis is the formulation and development of energy-
based probabilistic regression. This is a general and conceptually simple regression framework
with a clear probabilistic interpretation, using energy-based models to represent the true
conditional target distribution. The framework is applied to a number of regression problems
and demonstrates particularly strong performance for 2D bounding box regression, improving
the state-of-the-art when applied to the task of visual tracking.

The second main contribution is a critical evaluation of various uncertainty estimation
methods. A general introduction to the problem of estimating the predictive uncertainty of deep
models is first provided, together with an extensive comparison of the two popular methods
ensembling and MC-dropout. A number of regression uncertainty estimation methods are then
further evaluated, specifically examining their reliability under real-world distribution shifts.
This evaluation uncovers important limitations of current methods and serves as a challenge to
the research community. It demonstrates that more work is required in order to develop truly
reliable uncertainty estimation methods for regression.
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Energy-Based Models for
Deep Probabilistic Regression

Abstract
While deep learning-based classification is generally tackled using standard-
ized approaches, a wide variety of techniques are employed for regression. In
computer vision, one particularly popular such technique is that of confidence-
based regression, which entails predicting a confidence value for each input-
target pair (x, y). While this approach has demonstrated impressive results,
it requires important task-dependent design choices, and the predicted confi-
dences lack a natural probabilistic meaning. We address these issues by propos-
ing a general and conceptually simple regression method with a clear proba-
bilistic interpretation. In our proposed approach, we create an energy-based
model of the conditional target density p(y|x), using a deep neural network to
predict the un-normalized density from (x, y). This model of p(y|x) is trained
by directly minimizing the associated negative log-likelihood, approximated
using Monte Carlo sampling. We perform comprehensive experiments on four
computer vision regression tasks. Our approach outperforms direct regression,
as well as other probabilistic and confidence-based methods. Notably, our
model achieves a 2.2% AP improvement over Faster-RCNN for object detec-
tion on the COCO dataset, and sets a new state-of-the-art on visual tracking
when applied for bounding box estimation. In contrast to confidence-based
methods, our approach is also shown to be directly applicable to more gen-
eral tasks such as age and head-pose estimation. Code is available at https:
//github.com/fregu856/ebms_regression.

1 Introduction
Supervised regression entails learning a model capable of predicting a contin-
uous target value y from an input x, given a set of paired training examples.
It is a fundamental machine learning problem with many important applica-
tions within computer vision and other domains. Common regression tasks
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θ1
θ2

p(y | x; θ)

x

y

Deep Neural Network

Figure 1: An overview of the proposed regression method (top). We train an energy-
basedmodel p(y|x; θ) ∝ efθ(x,y) of the conditional target density p(y|x), using a DNN
fθ to predict the un-normalized density directly from the input-target pair (x, y). Our
approach is capable of predicting highly flexible densities and produce highly accurate
estimates. This is demonstrated for the problem of bounding box regression (bottom),
visualizing the marginal density for the top right box corner as a heatmap.

within computer vision include object detection [1, 2, 3, 4], head- and body-
pose estimation [5, 6, 7, 8], age estimation [9, 10, 11], visual tracking [12, 13,
14, 15] and medical image registration [16, 17], just to mention a few. Today,
such regression problems are commonly tackled using Deep Neural Networks
(DNNs), due to their ability to learn powerful feature representations directly
from data.

While classification is generally addressed using standardized losses and out-
put representations, a wide variety of different techniques are employed for
regression. The most conventional strategy is to train a DNN to directly pre-
dict a target y given an input x [18]. In such direct regression approaches,
the model parameters of the DNN are learned by minimizing a loss function,
for example the L2 or L1 loss, penalizing discrepancy between the predicted
and ground truth target values. From a probabilistic perspective, this approach
corresponds to creating a simple parametric model of the conditional target
density p(y|x), and minimizing the associated negative log-likelihood. The
L2 loss, for example, corresponds to a fixed-variance Gaussian model. More
recent work [19, 20, 21, 22, 23, 24] has also explored learning more expressive
models of p(y|x), by letting a DNN instead output the full set of parameters of
a certain family of probability distributions. To allow for straightforward im-
plementation and training, many of these probabilistic regression approaches

I-2
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Figure 2: An illustrative 1D regression problem. The training dataD = {(xi, yi)}2000i=1

is generated by the ground truth conditional target density p(y|x). Our energy-based
model p(y|x; θ) ∝ efθ(x,y) of p(y|x) is trained by directly minimizing the associated
negative log-likelihood, approximated using Monte Carlo importance sampling. In
contrast to the Gaussian model p(y|x; θ) = N (y;µθ(x), σ

2
θ(x)), our energy-based

model can learn multimodal and complex target densities directly from data.

however restrict the parametric model to unimodal distributions such as Gaus-
sian [20, 21] or Laplace [19, 22, 25], still severely limiting the expressiveness
of the learned conditional target density. While these methods benefit from a
clear probabilistic interpretation, they thus fail to fully exploit the predictive
power of the DNN.

The quest for improved regression accuracy has also led to the development of
more specialized methods, designed for a specific set of tasks. In computer vi-
sion, one particularly popular approach is that of confidence-based regression.
Here, a DNN instead predicts a scalar confidence value for input-target pairs
(x, y). The confidence can then be maximized w.r.t. y to obtain a target pre-
diction for a given input x. This approach is commonly employed for image-
coordinate regression tasks within e.g. human pose estimation [5, 6, 7] and
object detection [3, 4], where a 2D heatmap over image pixel coordinates y is
predicted. Recently, the approach was also applied to the problem of bounding
box regression by Jiang et al. [2]. Their proposed method, IoU-Net, obtained
state-of-the-art accuracy on object detection, and was later also successfully
applied to the task of visual tracking [15]. The training of such confidence-
based regression methods does however entail generating additional pseudo
ground truth labels, e.g. by employing a Gaussian kernel [26, 6], and select-
ing an appropriate loss function. This both requires numerous design choices
to be made, and limits the general applicability of the methods. Moreover,
confidence-based regression methods do not allow for a natural probabilistic
interpretation in terms of the conditional target density p(y|x). In this work, we
therefore set out to develop a method combining the general applicability and
the clear interpretation of probabilistic regression with the predictive power of
the confidence-based approaches.

Contributions We propose a general and conceptually simple regression
method with a clear probabilistic interpretation. Our method employs an
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energy-based model [27] to predict the un-normalized conditional target den-
sity p(y|x) from the input-target pair (x, y). It is trained by directly minimizing
the associated negative log-likelihood, exploiting tailoredMonte Carlo approx-
imations. At test time, targets are predicted by maximizing the conditional
target density p(y|x) through gradient-based refinement. Our energy-based
model is straightforward both to implement and train. Unlike commonly used
probabilistic models, it can however still learn highly flexible target densities
directly from data, as visualized in Figure 2. Compared to confidence-based
approaches, our method requires no pseudo labels, benefits from a clear prob-
abilistic interpretation, and is directly applicable to a variety of computer vi-
sion applications. We evaluate the proposed method on four diverse computer
vision regression tasks: object detection, visual tracking, age estimation and
head-pose estimation. Our method is found to significantly outperform both
direct regression baselines, and popular probabilistic and confidence-based al-
ternatives, including the state-of-the-art IoU-Net [2]. Notably, our method
achieves a 2.2% AP improvement over FPN Faster-RCNN [28] when applied
for object detection on COCO [29], and sets a new state-of-the-art on standard
benchmarks [30, 31] when applied for bounding box estimation in the recent
ATOM [15] visual tracker. Our method is also shown to be directly applica-
ble to the more general tasks of age and head-pose estimation, consistently
improving performance of a variety of baselines.

2 Background & Related Work
In supervised regression, the task is to learn to predict a target value y⋆ ∈ Y
from a corresponding input x⋆ ∈ X , given a training set of i.i.d. input-target
examples, D = {(xi, yi)}Ni=1, (xi, yi) ∼ p(x, y). As opposed to classification,
the target space Y is a continuous set, e.g. Y = RK . In computer vision, the
input space X often corresponds to the space of images, whereas the output
space Y depends on the task at hand. Common examples include Y = R2

in image-coordinate regression [6, 3], Y = R+ in age estimation [9, 10], and
Y = R4 in object bounding box regression [1, 2]. A variety of techniques have
previously been applied to supervised regression tasks. In order to motivate
and provide intuition for our proposed method, we here describe a few popular
approaches.

Direct Regression Over the last decade, DNNs have been shown to excel
at a wide variety of regression problems. Here, a DNN is viewed as a func-
tion fθ : U → O, parameterized by a set of learnable weights θ ∈ RP . The
most conventional regression approach is to train a DNN to directly predict
the targets, y⋆ = fθ(x

⋆), called direct regression. The model parameters θ are
learned by minimizing a loss ℓ(fθ(xi), yi) that penalizes discrepancy between
the prediction fθ(xi) and the ground truth target value yi on training examples
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(xi, yi). Common choices include the L2 loss, ℓ(ŷ, y) = ∥ŷ − y∥22, the L1

loss, ℓ(ŷ, y) = ∥ŷ − y∥1, and their close relatives [32, 18]. From a proba-
bilistic perspective, the choice of loss corresponds to minimizing the negative
log-likelihood− log p(y|x; θ) for a specific model p(y|x; θ) of the conditional
target density. For example, the L2 loss is derived from a fixed-variance Gaus-
sian model, p(y|x; θ) = N (y; fθ(x), σ

2).

Probabilistic Regression More recent work [19, 20, 21, 22, 25, 33, 23]
has explicitly taken advantage of this probabilistic perspective to achieve
more flexible parametric models p(y|x; θ) = p(y;ϕθ(x)), by letting the
DNN output the parameters ϕ of a family of probability distributions p(y;ϕ).
For example, a general 1D Gaussian model can be realized as p(y|x; θ) =
N
(
y;µθ(x), σ

2
θ(x)

)
, where the DNN outputs the mean and log-variance as

fθ(x) = ϕθ(x) = [µθ(x) logσ2
θ(x) ]

T ∈ R2. The model parameters θ are
learned by minimizing the negative log-likelihood−

∑N
i=1 log p(yi|xi; θ) over

the training set D. At test time, a target estimate y⋆ is obtained by first pre-
dicting the density parameter values ϕθ(x

⋆) and then, for instance, taking the
expected value of p(y;ϕθ(x)). Previous work has applied simple Gaussian and
Laplace models on computer vision tasks such as object detection [34, 35] and
optical flow estimation [22, 25], usually aiming to not only achieve accurate
predictions, but also to provide an estimate of aleatoric uncertainty [19, 36]. To
allow for multimodal models p(y;ϕθ(x)), mixture density networks (MDNs)
[37] have also been applied [33, 23]. The DNN then outputs weights for K
mixture components along with K sets of parameters, e.g. K sets of means
and log-variances for a mixture of Gaussians. Previous work has also applied
infinite mixture models by utilizing the conditional VAE (cVAE) framework
[38, 24]. A latent variable model p(y|x; θ) =

∫
p(y;ϕθ(x, z))p(z;ϕθ(x))dz

is then employed, where p(y;ϕθ(x, z)) and p(z;ϕθ(x) typically are Gaussian
distributions. Our proposed method also entails predicting a conditional target
density p(y|x; θ) and minimizing the associated negative log-likelihood. How-
ever, our energy-based model p(y|x; θ) is not limited to the functional form of
any specific probability density (e.g. Gaussian or Laplace), but is instead di-
rectly defined via a learned scalar function of (x, y). In contrast to MDNs and
cVAEs, our model p(y|x; θ) is not even limited to densities which are simple
to generate samples from. This puts minimal restricting assumptions on the
true p(y|x), allowing it to be efficiently learned directly from data.

Confidence-Based Regression Another category of approaches reformulates
the regression problem as y⋆ = argmaxy fθ(x, y), where fθ(x, y) ∈ R is
a scalar confidence value predicted by the DNN. The idea is thus to predict
a quantity fθ(x, y), depending on both input x and target y, that can be maxi-
mized over y to obtain the final prediction y⋆. This maximization-based formu-
lation is inherent in Structural SVMs [39], but has also been adopted for DNNs.
We term this family of approaches confidence-based regression. Compared
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to direct regression, the predicted confidence fθ(x, y) can encapsulate multi-
ple hypotheses and other ambiguities. Confidence-based regression has been
shown particularly suitable for image-coordinate regression tasks, such as hand
keypoint localization [40] and body-part detection [26, 41, 6]. In these cases,
a CNN is trained to output a 2D heatmap over the image pixel coordinates y,
thus taking full advantage of the translational invariance of the problem. In
computer vision, confidence prediction has also been successfully employed
for tasks other than pure image-coordinate regression. Jiang et al. [2] proposed
the IoU-Net for bounding box regression in object detection, where a bounding
box y ∈ R4 and image x are both input to the DNN to predict a confidence
fθ(x, y). It employs a pooling-based architecture that is differentiable w.r.t.
the bounding box y, allowing efficient gradient-based maximization to obtain
the final estimate y⋆ = argmaxy fθ(x, y). IoU-Net was later also successfully
applied to target object estimation in visual tracking [15].

In general, confidence-based approaches are trained using a set of pseudo la-
bel confidences c(xi, yi, y) generated for each training example (xi, yi), and
by employing a loss ℓ

(
fθ(xi, y), c(xi, yi, y)

)
. One strategy [41, 3] is to treat

the confidence prediction as a binary classification problem, where c(xi, yi, y)
represents either the class, c ∈ {0, 1}, or its probability, c ∈ [0, 1], and employ
cross-entropy based losses ℓ. The other approach is to treat the confidence pre-
diction as a direct regression problem itself by applying standard regression
losses, such as L2 [40, 15, 26] or the Huber loss [2]. In these cases, the pseudo
label confidences c can be constructed using a similarity measure S in the tar-
get space, c(xi, yi, y) = S(y, yi), for example defined as the Intersection over
Union (IoU) between two bounding boxes [2] or simply by a Gaussian ker-
nel [26, 6, 7].

While these methods have demonstrated impressive results, confidence-based
approaches thus require important design choices. In particular, the strategy
for constructing the pseudo labels c and the choice of loss ℓ are often crucial for
performance and highly task-dependent, limiting general applicability. More-
over, the predicted confidence fθ(x, y) can be difficult to interpret, since it has
no natural connection to the conditional target density p(y|x). In contrast, our
approach is directly trained to predict p(y|x) itself, and importantly it does not
require generation of pseudo label confidences or choosing a specific loss.

Regression-by-Classification A regression problem can also be treated as a
classification problem by first discretizing the target space Y into a finite set
of C classes. Standard techniques from classification, such as softmax and
the cross-entropy loss, can then be employed. This approach has previously
been applied to both age estimation [9, 10, 42] and head-pose estimation [43,
8]. The discretization of the target space Y however complicates exploiting its
inherent neighborhood structure, an issue that has been addressed by exploring
ordinal regression methods for 1D problems [11, 44]. While our energy-based
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approach can be seen as a generalization of the softmaxmodel for classification
to the continuous target space Y , it does not suffer from the aforementioned
drawbacks of regression-by-classification. On the contrary, our model natu-
rally allows the network to exploit the full structure of the continuous target
space Y .

Energy-Based Models Our approach is of course also related to the theoret-
ical framework of energy-based models, which often has been employed for
machine learning problems in the past [45, 46, 27]. It involves learning an en-
ergy function Eθ(x) ∈ R that assigns low energy to observed data xi and high
energy to other values of x. Recently, energy-based models have been used
primarily for unsupervised learning problems within computer vision [47, 48,
49, 50, 51], where DNNs are directly used to predict Eθ(x). These models are
commonly trained by minimizing the negative log-likelihood, stemming from
the probabilistic model p(x; θ) = e−Eθ(x)/

∫
e−Eθ(x)dx, for example by gen-

erating approximate image samples from p(x; θ) using Markov Chain Monte
Carlo [48, 49, 51]. In contrast, we study the application of energy-based mod-
els for p(y|x) in supervised regression, a mostly overlooked research direction
in recent years, and obtain state-of-the-art performance on four diverse com-
puter vision regression tasks.

3 Proposed Regression Method
We propose a general and conceptually simple regression method with a clear
probabilistic interpretation. Our method employs an energy-based model
within a probabilistic regression formulation, defined in Section 3.1. In Sec-
tion 3.2, we introduce our training strategy which is designed to be simple,
yet highly effective and applicable to a wide variety of regression tasks within
computer vision. Lastly, we describe our prediction strategy for high accuracy
in Section 3.3.

3.1 Formulation

We take the probabilistic view of regression by creating a model p(y|x; θ) of
the conditional target density p(y|x), in which θ is learned by minimizing the
associated negative log-likelihood. Instead of defining p(y|x; θ) by letting a
DNN predict the parameters of a certain family of probability distributions (e.g.
Gaussian or Laplace), we construct a versatile energy-based model that can
better leverage the predictive power of DNNs. To that end, we take inspiration
from confidence-based regression approaches and let a DNN directly predict a
scalar value for any input-target pair (x, y). Unlike confidence-based methods
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however, this prediction has a clear probabilistic interpretation. Specifically,
we view a DNN as a function fθ : X × Y → R, parameterized by θ ∈ RP ,
that maps an input-target pair (x, y) ∈ X × Y to a scalar value fθ(x, y) ∈ R.
Our model p(y|x; θ) of the conditional target density p(y|x) is then defined
according to,

p(y|x; θ) = efθ(x,y)

Z(x, θ)
, Z(x, θ) =

∫
efθ(x,ỹ)dỹ , (1)

where Z(x, θ) is the input-dependent normalizing partition function. We train
this energy-basedmodel (1) by directly minimizing the negative log-likelihood
− log p({yi}i|{xi}i; θ) =

∑N
i=1− log p(yi|xi; θ), where each term is given by,

− log p(yi|xi; θ) = log
(∫

efθ(xi,y)dy

)
− fθ(xi, yi). (2)

This direct and straightforward training approach thus requires the evaluation
of the generally intractable Z(x, θ) =

∫
efθ(x,y)dy. Many fundamental com-

puter vision tasks, such as object detection, keypoint estimation and pose es-
timation, however rely on regression problems with a low-dimensional target
space Y . In such cases, effective finite approximations of Z(x, θ) can be ap-
plied. In some tasks, such as image-coordinate regression, this is naturally
performed by a grid approximation, utilizing the dense prediction obtained by
fully-convolutional networks. In this work, we however investigate a more
generally applicable technique, namely Monte Carlo approximations with im-
portance sampling. This procedure, when employed for training the network,
is detailed in Section 3.2.

At test time, given an input x⋆, our model in (1) allows evaluating the condi-
tional target density p(y|x⋆; θ) for any target y by first approximatingZ(x⋆, θ),
and then predicting the scalar fθ(x⋆, y) using the DNN. This enables the com-
putation of, e.g., the mean and variance of the target value y. In this work,
we take inspiration from confidence-based regression and focus on finding the
most likely prediction, y⋆ = argmaxy p(y|x⋆; θ) = argmaxy fθ(x⋆, y), which
does not require the evaluation of Z(x⋆, θ) during inference. Thanks to the
auto-differentiation capabilities of modern deep learning frameworks, we can
apply gradient-based techniques to find the final prediction by simply maxi-
mizing the network output fθ(x⋆, y) w.r.t. y. We elaborate on this procedure
for prediction in Section 3.3.

3.2 Training

Our energy-based model p(y|x; θ) = efθ(x,y)/Z(x, θ) of the conditional
target density is trained by directly minimizing the negative log-likelihood
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∑N
i=1− log p(yi|xi; θ). To evaluate the integral in (2), we employMonte Carlo

importance sampling. Each term− log p(yi|xi; θ) is therefore approximated by
sampling values {y(k)}Mk=1 from a proposal distribution q(y|yi) that depends
on the ground truth target value yi,

− log p(yi|xi; θ) ≈ log
(

1

M

M∑
k=1

efθ(xi,y(k))

q(y(k)|yi)

)
− fθ(xi, yi). (3)

The final loss J(θ) used to train the DNN fθ is then obtained by averaging over
all training examples {(xi, yi)}ni=1 in the current mini-batch,

J(θ) =
1

n

n∑
i=1

log
(

1

M

M∑
m=1

efθ(xi,y(i,m))

q(y(i,m)|yi)

)
− fθ(xi, yi), (4)

where {y(i,m)}Mm=1 are M samples drawn from q(y|yi). Qualitatively, min-
imizing J(θ) encourages the DNN to output large values fθ(xi, yi) for the
ground truth target yi, while minimizing the predicted value fθ(xi, y) at all
other targets y. In ambiguous or uncertain cases, the DNN can output small
values everywhere or large values at multiple hypotheses, but at the cost of a
higher loss.

As can be seen in (4), the DNN fθ is applied both to the input-target pair (xi, yi),
and all input-sample pairs {(xi, y(i,m))}Mm=1 during training. While this can
seem inefficient, most applications in computer vision employ network archi-
tectures that first extract a deep feature representation for the input xi. The
DNN fθ can thus be designed to combine this input feature with the target y
at a late stage, as visualized in Figure 1. The input feature extraction process,
which becomes the main computational bottleneck, therefore needs to be per-
formed only once for each xi. In practice, we found our training strategy to not
add any significant overhead compared to the direct regression baselines, and
the computational cost to be identical to that of the confidence-based methods.

Compared to confidence-based regression, a significant advantage of our ap-
proach is however that there is no need for generating task-dependent pseudo
label confidences or choosing between different losses. The only design choice
of our training method is the proposal distribution q(y|yi). Note however that
since the loss J(θ) in (4) explicitly adapts to q(y|yi), this choice has no ef-
fect on the overall behaviour of the loss, only on the quality of the sampled
approximation. We found a mixture of a few equally weighted Gaussian com-
ponents, all centered at the target label yi, to consistently perform well in our
experiments across all four diverse computer vision applications. Specifically,
q(y|yi) is set to,

q(y|yi) =
1

L

L∑
l=1

N (y; yi, σ
2
l I), (5)
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where the standard deviations {σl}Ll=1 are hyperparameters selected based on
a validation set for each experiment. We only considered the simple Gaussian
proposal in (5), as this was found sufficient to obtain state-of-the-art exper-
imental results. Full ablation studies for the number of components L and
{σl}Ll=1 are provided in the supplementary material. Figure 2 illustrates that
our model p(y|x; θ) can learn complex conditional target densities, containing
both multi-modalities and asymmetry, directly from data using the described
training procedure. In this illustrative example, we use (5) with L = 2 and
σ1 = 0.1, σ2 = 0.8.

3.3 Prediction

Given an input x⋆ at test time, the trained DNN fθ can be used to evaluate
the full conditional target density p(y|x⋆; θ) = efθ(x

⋆,y)/Z(x⋆, θ), by employ-
ing the aforementioned techniques to approximate the constant Z(x⋆, θ). In
many applications, the most likely prediction y⋆ = argmaxy p(y|x⋆; θ) is how-
ever the single desired output. For our energy-based model, this is obtained
by directly maximizing the DNN output, y⋆ = argmaxy fθ(x⋆, y), thus not
requiring Z(x⋆, θ) to be evaluated. By taking inspiration from IoU-Net [2]
and designing the DNN fθ to be differentiable w.r.t. the target y, the gra-
dient ∇yfθ(x

⋆, y) can be efficiently evaluated using the auto-differentiation
tools implemented in modern deep learning frameworks. An estimate of
y⋆ = argmaxy fθ(x⋆, y) can therefore be obtained by performing gradient
ascent to find a local maximum of fθ(x⋆, y).

The gradient ascent refinement is performed either on a single initial estimate
ŷ, or on a set of random initializations {ŷk}Kk=1 to obtain a final accurate
prediction y⋆. Starting at y = ŷk, we thus run T gradient ascent iterations,
y ← y+ λ∇yfθ(x

⋆, y), with step-length λ. In our experiments, we fix T (typ-
ically, T = 10) and select λ using grid search on a validation set. As noted
in Section 3.2, this prediction procedure can be made highly efficient by ex-
tracting the feature representation for x⋆ only once. Back-propagation is then
performed only through a few final layers of the DNN to evaluate the gradient
∇yfθ(x

⋆, y). The gradient computation for a set of candidates {ŷk}Kk=1 can
also be parallelized on the GPU by simple batching, requiring no significant
overhead. Overall, the inference speed is somewhat decreased compared to
direct regression baselines, but is identical to confidence-based methods such
as IoU-Net [2]. An algorithm detailing this prediction procedure is found in
the supplementary material.
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Table 1: Impact ofL and {σl}Ll=1 in the proposal distribution q(y|yi) (5), for the object
detection task on the 2017 val split of the COCO [29] dataset. For L = 2, σ1 = σ2/4.
For L = 3, σ1 = σ3/4 and σ2 = σ3/2. L = 3 with σL = 0.15 is selected.

Number of components L 1 2 3
Base proposal st. dev. σL 0.02 0.04 0.08 0.1 0.15 0.2 0.1 0.15 0.2

AP (%) 38.1 38.5 37.5 39.0 39.1 39.0 39.0 39.1 38.8

Table 2: Results for the object detection task on the 2017 test-dev split of the
COCO [29] dataset. Our proposed method significantly outperforms the baseline FPN
Faster-RCNN [28] and the state-of-the-art confidence-based IoU-Net [2].

Formulation Direct Gaussian Gaussian Gaussian Gaussian Gaussian Laplace Confidence Confidence
Approach Faster-RCNN Mixt. 2 Mixt. 4 Mixt. 8 cVAE IoU-Net IoU-Net∗ Ours
AP (%) 37.2 36.7 37.1 37.0 36.8 37.2 37.1 38.3 38.2 39.4
AP50(%) 59.2 58.7 59.1 59.1 59.1 59.2 59.1 58.3 58.4 58.6
AP75(%) 40.3 39.6 40.0 39.9 39.7 40.0 40.2 41.4 41.4 42.1
FPS 12.2 12.2 12.2 12.1 12.1 9.6 12.2 5.3 5.3 5.3

4 Experiments
We perform comprehensive experiments on four different computer vision re-
gression tasks: object detection, visual tracking, age estimation and head-pose
estimation. Our proposed approach is compared both to baseline regression
methods and to state-of-the-art models. Notably, our method significantly
outperforms the confidence-based IoU-Net [2] method for bounding box re-
gression in direct comparisons, both when applied for object detection on the
COCO dataset [29] and for target object estimation in the recent ATOM [15]
visual tracker. On age and head-pose estimation, our approach is shown to con-
sistently improve performance of a variety of baselines. All experiments are
implemented in PyTorch [52]. For all tasks, further details are also provided
in the supplementary material.

4.1 Object Detection

We first perform experiments on object detection, the task of classifying and
estimating a bounding box for each object in a given image. Specifically, we
compare our regression method to other techniques for the task of bounding
box regression, by integrating them into an existing object detection pipeline.
To this end, we use the Faster-RCNN [1] framework, which serves as a pop-
ular baseline in the object detection field due to its strong state-of-the-art per-
formance. It employs one network head for classification and one head for
regressing the bounding box using the direct regression approach. We also in-
clude various probabilistic regression baselines and compare with simple Gaus-
sian and Laplace models, by modifying the Faster-RCNN regression head to
predict both the mean and log-variance of the distribution, and adopting the as-
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sociated negative log-likelihood loss. Similarly, we compare with mixtures of
K = {2, 4, 8} Gaussians by duplicating the modified regression headK times
and adding a network head for predicting K component weights. Moreover,
we compare with an infinite mixture of Gaussians by training a cVAE. Finally,
we also compare our approach to the state-of-the-art confidence-based IoU-
Net [2]. It extends Faster-RCNN with an additional branch that predicts the
IoU overlap between a target bounding box y and the ground truth. The IoU
prediction branch uses differentiable region pooling [2], allowing the initial
bounding box predicted by the Faster-RCNN to be refined using gradient-based
maximization of the predicted IoU confidence.

For our approach, we employ an identical architecture as used in IoU-
Net for a fair comparison. Instead of training the network to output the
IoU, we predict the exponent fθ(x, y) in (1), trained by minimizing the
negative log-likelihood in (4). We parametrize the bounding box as y =
(cx/w0, cy/h0, logw, logh) ∈ R4, where (cx, cy) and (w, h) denote the center
coordinate and size, respectively. The reference size (w0, h0) is set to that of
the ground truth during training and the initial box during prediction. Based on
the ablation study found in Table 1, we employL = 3 isotropic Gaussians with
standard deviation σl = 0.0375 · 2l−1 for the proposal distribution (5). In ad-
dition to the standard IoU-Net, we compare with a version (denoted IoU-Net∗)
employing the same proposal distribution and inference settings as in our ap-
proach. For both our method and IoU-Net∗, we set the refinement step-length
λ using grid search on a separate validation set.

Our experiments are performed on the large-scale COCO benchmark [29]. We
use the 2017 train split (≈ 118 000 images) for training and the 2017 val split
(≈ 5 000 images) for setting our hyperparameters. The results are reported
on the 2017 test-dev split (≈ 20 000 images), in terms of the standard COCO
metrics AP, AP50 and AP75. We also report the inference speed in terms of
frames-per-second (FPS) on a single NVIDIA TITAN Xp GPU. We initialize
all networks in our comparison with the pre-trained Faster-RCNN weights, us-
ing the ResNet50-FPN [28] backbone, and re-train only the newly added layers
for a fair comparison. The results are shown in Table 2. Our proposed method
obtains the best results, significantly outperforming Faster-RCNNand IoU-Net
by 2.2%and 1.1% in AP, respectively. The Gaussian model is outperformed by
the mixture of 2Gaussians, but note that adding more components does not fur-
ther improve the performance. In comparison, the cVAE achieves somewhat
improved performance, but is still clearly outperformed by our method. Com-
pared to the probabilistic baselines, we believe that our energy-based model of-
fers a more direct and effective representation of the underlying density via the
scalar DNN output fθ(x, y). The inference speed of our method is somewhat
lower than that of Faster-RCNN, but identical to IoU-Net. How the number of
iterations T in the gradient-based refinement affects inference speed and per-
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Table 3: Results for the visual tracking task on the two common datasets Track-
ingNet [30] and UAV123 [31]. The symbol † indicates an approximate value (±1),
taken from the plot in the corresponding paper. Our proposed method significantly
outperforms the baseline ATOM and other recent state-of-the-art trackers.

Dataset Metric ECO SiamFC MDNet UPDT DaSiamRPN SiamRPN++ ATOM ATOM∗ Ours
[53] [54] [12] [55] [13] [14] [15]

TrackingNet
Precision (%) 49.2 53.3 56.5 55.7 59.1 69.4 64.8 66.6 69.7
Norm. Prec. (%) 61.8 66.6 70.5 70.2 73.3 80.0 77.1 78.4 80.1
Success (%) 55.4 57.1 60.6 61.1 63.8 73.3 70.3 72.0 74.5

UAV123
OP0.50 (%) 64.0 - - 66.8 73.6 75† 78.9 79.0 80.8
OP0.75 (%) 32.8 - - 32.9 41.1 56† 55.7 56.5 60.2
AUC (%) 53.7 - 52.8 55.0 58.4 61.3 65.0 64.9 67.2

formance is analyzed in Figure 3a, showing that our choice T = 10 provides
a reasonable trade-off.

4.2 Visual Tracking

Next, we evaluate our approach on the problem of generic visual object track-
ing. The task is to estimate the bounding box of a target object in every frame
of a video. The target object is defined by a given box in the first video frame.
We employ the recently introduced ATOM [15] tracker as our baseline. Given
the first-frame annotation, ATOM trains a classifier to first roughly localize
the target in a new frame. The target bounding box is then determined using
an IoU-Net-based module, which is also conditioned on the first-frame tar-
get appearance using a modulation-based architecture. We train our network
to predict the conditional target density through fθ(x, y) in (1), using a net-
work architecture identical to the baseline ATOM tracker. In particular, we
employ the same bounding box parameterization as for object detection (Sec-
tion 4.1) and sample M = 128 boxes during training from a proposal distri-
bution (5) generated by L = 2 Gaussians with standard deviations σ1 = 0.05,
σ2 = 0.5. During tracking, we follow the same procedure as in ATOM, sam-
pling 10 boxes in each frame followed by gradient ascent to refine the estimate
generated by the classification module. The inference speed of our approach is
thus identical to ATOM, running at over 30 FPS on a single NVIDIA GT-1080
GPU.
We demonstrate results on two standard tracking benchmarks: TrackingNet
[30] and UAV123 [31]. TrackingNet contains challenging videos sampled
fromYouTube, with a test set of 511 videos. Themainmetric is the Success, de-
fined as the average IoU overlap with the ground truth. UAV123 contains 123
videos captured from a UAV, and includes small and fast-moving objects. We
report the overlap precision metric (OPH ), defined as the percentage of frames
having bounding box IoU overlap larger than a threshold H . The final AUC
score is computed as the average OP over all thresholds H ∈ [0, 1]. Hyperpa-
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Figure 3: (a) Impact of the number of gradient ascent iterations T on performance
(AP) and inference speed (FPS), for the object detection task on the 2017 val split of
the COCO [29] dataset. (b) Success plot on the UAV123 [31] visual tracking dataset,
showing the overlap precision OPH as a function of the overlap thresholdH .

rameters are set on the OTB [56] and NFS [57] datasets, containing 100 videos
each. Due to the significant challenges imposed by the limited supervision
and generic nature of the tracking problem, there are no competitive baselines
employing direct bounding box regression. Current state-of-the-art employ ei-
ther confidence-based regression, as in ATOM, or anchor-based bounding box
regression techniques [13, 14]. We therefore only compare with the ATOM
baseline and include other recent state-of-the-art methods in the comparison.
As in Section 4.1, we also compare with a version (denoted ATOM∗) of the
IoU-Net-based ATOM employing the same training and inference settings as
our final approach. The results are shown in Table 3, and the success plot on
UAV123 is shown in Figure 3b. Our approach achieves a significant 2.5% and
2.2% absolute improvement over ATOM on the overall metric on TrackingNet
and UAV123, respectively. Note that the improvements are most prominent for
high-accuracy boxes, as indicated by OP0.75. Our approach also outperforms
the recent SiamRPN++ [14], which employs anchor-based bounding box re-
gression [1, 58] and a much deeper backbone network (ResNet50) compared
to ours (ResNet18). Figure 1 (bottom) visualizes an illustrative example of the
target density p(y|x; θ) ∝ efθ(x,y) predicted by our approach during tracking.
As illustrated, it predicts flexible densities which qualitatively capture mean-
ingful uncertainty in challenging cases.

4.3 Age Estimation

To demonstrate the general applicability of our proposed method, we also per-
form experiments on regression tasks not involving bounding boxes. In age
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Table 4: Results for the age estimation task on the UTKFace [59] dataset. Gradient-
based refinement using our proposed method consistently improves MAE (lower is
better) for the age predictions produced by a variety of different baselines.

+Refine Niu et al. [60] Cao et al. [11] Direct Gaussian Laplace Softmax (CE, L2) Softmax (CE, L2, Var)

5.74 ± 0.05 5.47 ± 0.01 4.81 ± 0.02 4.79 ± 0.06 4.85 ± 0.04 4.78 ± 0.05 4.81 ± 0.03
✓ - - 4.65 ± 0.02 4.66 ± 0.04 4.81 ± 0.04 4.65 ± 0.04 4.69 ± 0.03

Table 5: Results for the head-pose estimation task on the BIWI [62] dataset. Gradient-
based refinement using our proposed method consistently improves the average MAE
(lower is better) for yaw, pitch and roll for the predicted pose produced by our baselines.

+Refine Gu et al. [63] Yang et al. [8] Direct Gaussian Laplace Softmax (CE, L2) Softmax (CE, L2, Var)

3.66 3.60 3.09 ± 0.07 3.12 ± 0.08 3.21 ± 0.06 3.04 ± 0.08 3.15 ± 0.07
✓ - - 3.07 ± 0.07 3.11 ± 0.07 3.19 ± 0.06 3.01 ± 0.07 3.11 ± 0.06

estimation, we are given a cropped image x ∈ Rh×w×3 of a person’s face,
and the task is to predict his/her age y ∈ R+. We utilize the UTKFace [59]
dataset, specifically the subset of 16 434 images used by Cao et al. [11]. We
also utilize the dataset split employed in [11], with 3 287 test images and 11 503
images for training. Additionally, we use 1 644 of the training images for val-
idation. Methods are evaluated in terms of the Mean Absolute Error (MAE).
The DNN architecture fθ(x, y) of our model first extracts ResNet50 [61] fea-
tures gx ∈ R2048 from the input image x. The age y is processed by four
fully-connected layers, generating gy ∈ R128. The two feature vectors are
then concatenated and processed by two fully-connected layers, outputting
fθ(x, y) ∈ R. We apply our proposed method to refine the age predicted by
baseline models, using the gradient ascent maximization of fθ(x, y) detailed
in Section 3.3. All baseline DNN models employ a similar architecture, in-
cluding an identical ResNet50 for feature extraction and the same number of
fully-connected layers to output either the age y ∈ R (Direct), mean and vari-
ance parameters for Gaussian and Laplace distributions, or to output logits for
C discretized classes (Softmax). The results are found in Table 4. We observe
that age refinement provided by ourmethod consistently improves the accuracy
of the predictions generated by the baselines. For Direct, e.g., this refinement
marginally decreases inference speed from 49 to 36 FPS.

4.4 Head-Pose Estimation

Lastly, we evaluate our method on the task of head-pose estimation. In this
case, we are given an image x ∈ Rh×w×3 of a person, and the aim is to predict
the orientation y ∈ R3 of his/her head, where y is the yaw, pitch and roll
angles. We utilize the BIWI [62] dataset, specifically the processed dataset
provided by Yang et al. [8], in which the images have been cropped to faces
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detected using MTCNN [64]. We also employ protocol 2 as defined in [8],
with 10 613 images for training and 5 065 images for testing. Additionally,
we use 1 010 training images for validation. The methods are evaluated in
terms of the average MAE for yaw, pitch and roll. The network architecture
of the DNN fθ(x, y) defining our model takes the image x ∈ Rh×w×3 and
orientation y ∈ R3 as inputs, but is otherwise identical to the age estimation
case (Section 4.3). Our model is again evaluated by applying the gradient-
based refinement to the predicted orientation y ∈ R3 produced by a number of
baseline models. We use the same baselines as for age estimation, and apart
from minor changes required to increase the output dimension from 1 to 3,
identical network architectures are also used. The results are found in Table 5,
and also in this case we observe that refinement using our proposed method
consistently improves upon the baselines.

5 Conclusion
We proposed a general and conceptually simple regression method with a
clear probabilistic interpretation. It models the conditional target density
p(y|x) by predicting the un-normalized density through a DNN fθ(x, y), tak-
ing the input-target pair (x, y) as input. This energy-based model p(y|x; θ) =
efθ(x,y)/Z(x, θ) of p(y|x) is trained by directly minimizing the associated neg-
ative log-likelihood, employing Monte Carlo importance sampling to approxi-
mate the partition function Z(x, θ). At test time, targets are predicted by maxi-
mizing the DNN output fθ(x, y) w.r.t. y via gradient-based refinement. Exten-
sive experiments performed on four diverse computer vision tasks demonstrate
the high accuracy and wide applicability of our method. Future directions
include exploring improved architectural designs, studying other regression
applications, and investigating our proposed method’s potential for aleatoric
uncertainty estimation.
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Supplementary Material
In this supplementary material, we provide additional details and results. It
consists of Appendix A - Appendix F. Appendix A contains a detailed algo-
rithm for our employed prediction procedure. Appendix B contains details on
the illustrative 1D regression problem in Figure 2 in the main paper. Further
details on the employed training and inference procedures are provided in Ap-
pendix C for the object detection experiments, and in Appendix D for the visual
tracking experiments. Lastly, Appendix E and Appendix F contain details and
full results for the experiments on age estimation and head-pose estimation,
respectively. Note that equations, tables, figures and algorithms in this sup-
plementary document are numbered with the prefix “S”. Numbers without this
prefix refer to the main paper.

A Prediction Algorithm
Our prediction procedure (Section 3.3) is detailed in Algorithm S1, where λ
denotes the gradient ascent step-length, η is a decay of the step-length and T
is the number of iterations. In our experiments, we fix T (typically, T = 10)
and select {λ, η} using grid search on a validation set.

Algorithm S1 Prediction via gradient-based refinement.
Input: x⋆, ŷ, T , λ, η.
1: y ← ŷ.
2: for t = 1, . . . , T do
3: PrevValue← fθ(x

⋆, y).
4: ỹ ← y + λ∇yfθ(x

⋆, y).
5: NewValue← fθ(x

⋆, ỹ).
6: if NewValue > PrevValue then
7: y ← ỹ.
8: else
9: λ← ηλ.
10: Return y.

B Illustrative Example

The ground truth conditional target density p(y|x) in Figure 2 is defined by a
mixture of two Gaussian components (with weights 0.2 and 0.8) for x < 0,
and a log-normal distribution (with µ = 0.0, σ = 0.25) for x ≥ 0. The
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training data {(xi, yi)}2000i=1 was generated by uniform random sampling of x,
xi ∼ U(−3, 3). Both models were trained for 75 epochs with a batch size of
32 using the ADAM [65] optimizer.

The Gaussian model is defined using a DNN fθ(x) according to,

p(y|x; θ) = N
(
y;µθ(x), σ

2
θ(x)

)
,

fθ(x) = [µθ(x) logσ2
θ(x) ]

T ∈ R2.
(S1)

It is trained by minimizing the negative log-likelihood, corresponding to the
loss,

J(θ) =
1

n

n∑
i=1

(yi − µθ(xi))
2

σ2
θ(xi)

+ logσ2
θ(xi). (S2)

The DNN fθ is a simple feed-forward neural network, containing two shared
fully-connected layers (dimensions: 1 → 10, 10 → 10) and two identical
heads for µ and logσ2 of three fully-connected layers (10 → 10, 10 → 10,
10→ 1).

Our proposed model p(y|x; θ) = efθ(x,y)/Z(x, θ) (Eq. 1 in the paper) is
defined using a feed-forward neural network fθ(x, y) containing two fully-
connected layers (1 → 10, 10 → 10) for both x and y, and three fully-
connected layers (20 → 10, 10 → 10, 10 → 1) processing the concatenated
(x, y) feature vector. It is trained using M = 1024 samples from a proposal
distribution q(y|yi) (Eq. 5 in the paper) with L = 2 and variances σ2

1 = 0.12,
σ2
2 = 0.82.

C Object Detection
Here, we provide further details about the network architectures, training pro-
cedure, and hyperparameters used for our experiments on object detection (Sec-
tion 4.1 in the paper).

C.1 Network Architecture

We use the Faster-RCNN [1] detector with ResNet50-FPN [28] as our baseline.
As visualized in Figure S1a, Faster-RCNN generates object proposals using a
region proposal network (RPN). The features from the proposal regions are
then pooled to a fixed-sized feature map using the RoiPool layer [66]. The
pooled features are then passed through a feature extractor (denoted Feat-Box)
consisting of two fully-connected (FC) layers. The output feature vector is then
passed through two parallel FC layers, one which predicts the class label (de-
noted FC-Cls), and another which regresses the offsets between the proposal
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Figure S1: Network architectures for the different object detection networks used in
our experiments (Section 4.1 in the paper). The backbone feature extractor (ResNet50-
FPN), and the region proposal network (RPN) is not shown for clarity. We do not train
the blocks in blue color, using the pre-trained Faster-RCNN weights from [67] instead.
The blocks in red are initialized with the pre-trained Faster-RCNN weights and fine-
tuned. The blocks in green on the other hand are trained from scratch.

and the ground truth box (denoted FC-BB). We use the PyTorch implementa-
tion for Faster-RCNN from [67]. Note that we use the RoiAlign [68] layer
instead of RoiPool in our experiments as it has been shown to achieve better
performance [68].

For the Gaussian and Laplace probabilistic models (Gaussian and Laplace in
Table 2 in the paper), we replace the FC-BB layer in Faster-RCNNwith two par-
allel FC layers, denoted FC-BBMean and FC-BBVar, which predict the mean
and the log-variance of the distribution modeling the offset between the pro-
posal and the ground truth box for each coordinate. This architecture is shown
in Figure S1b. For the mixtures of K = {2, 4, 8} Gaussians, we duplicate
FC-BBMean and FC-BBVar K times, and add an FC layer for predicting the
K component weights. For the cVAE, FC-BBMean and FC-BBVar instead
outputs the mean and log-variance of a Gaussian distribution for the latent
variable z ∈ R10. Duplicates of FC-BBMean and FC-BBVar, modified to also
take sampled z values as input, then predicts the mean and log-variance of the
distribution modeling the bounding box offset.

For our confidence-based IoU-Net [2] models (IoU-Net and IoU-Net∗ in Ta-
ble 2), we use the same network architecture as employed in the original paper,
shown in Figure S1c. That is, we add an additional branch to predict the IoU
overlap between the proposal box and the ground truth. This branch uses the
PrRoiPool [2] layer to pool the features from the proposal regions. The pooled
features are passed through a feature extractor (denoted Feat-Conf) consisting
of two FC layers. The output feature vector is passed through another FC layer,
FC-Conf, which predicts the IoU. We use an identical architecture for our ap-
proach, but train it to output fθ(x, y) in p(y|x; θ) = efθ(x,y)/Z(x, θ) instead.
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C.2 Training

We use the pre-trained weights for Faster-RCNN from [67]. Note that the
bounding box regression in Faster-RCNN is trained using a direct method, with
an Huber loss [32]. We trained the other networks in Table 2 in the paper (Gaus-
sian, Gaussian Mixt. 2, Gaussian Mixt. 4, Gaussian Mixt. 8, Gaussian cVAE,
Laplace, IoU-Net, IoU-Net∗ and Ours) on the MS-COCO [29] training split
(2017 train) using stochastic gradient descent (SGD) with a batch size of 16
for 60k iterations. The base learning rate lrbase is reduced by a factor of 10
after 40k and 50k iterations, for all the networks. We also warm up the train-
ing by linearly increasing the learning rate from 1

3 lrbase to lrbase during the first
500 iterations. We use a weight decay of 0.0001 and a momentum of 0.9. For
all the networks, we only trained the newly added layers, while keeping the
backbone and the region proposal network fixed.

For the Gaussian, mixture of Gaussians, cVAE and Laplace models, we only
train the final predictors (FC-BBMean and FC-BBVar), while keeping the class
predictor (FC-Cls) and the box feature extractor (Feat-Box) fixed. We also
tried fine-tuning the FC-Cls and Feat-Box weights for the Gaussian model,
with different learning rate settings, but obtained worse performance on the
validation set. The weights for both FC-BBMean and FC-BBVar were ini-
tialized with zero mean Gaussian with standard deviation of 0.001. All these
models were trained with a base learning rate lrbase = 0.005 by minimizing the
negative log-likelihood, except for the cVAE which is trained by maximizing
the ELBO (using 128 sampled z values to approximate the expectation).

For the IoU-Net, IoU-Net∗ and our proposed model, we only trained the newly
added confidence branch. We found it beneficial to initialize the feature extrac-
tor block (Feat-Conf) with the corresponding weights from Faster-RCNN, i.e.
the Feat-Box block. The weights for the predictor FC-Conf were initialized
with zero mean Gaussian with standard deviation of 0.001. As in the origi-
nal paper [2], we used a base learning rate lrbase = 0.01 for the IoU-Net and
IoU-Net∗ networks. For our proposed model, we used lrbase = 0.001 due to
the different scaling of the loss. Note that we did not perform any parame-
ter tuning for setting the learning rates. We generate 128 proposals for each
ground truth box during training. For the IoU-Net, we use the proposal genera-
tion strategy mentioned in the original paper [2]. That is, for each ground truth
box, we generate a large set of candidate boxes which have an IoU overlap of at
least 0.5 with the ground truth, and uniformly sample 128 proposals from this
candidate set w.r.t. the IoU. For IoU-Net∗ and our model, we sample boxes
from a proposal distribution (Eq. 5 in the paper) generated by L = 3 Gaus-
sians with standard deviations of 0.0375, 0.075 and 0.15. The IoU-Net and
IoU-Net∗ are trained by minimizing the Huber loss between the predicted IoU
and the ground truth, while our model is trained by minimizing the negative
log likelihood of the training data (Eq. 4 in the paper).
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Table S1: Impact of L and {σl}Ll=1 in the proposal distribution q(y|yi) (Eq. 5 in the
paper), for the object detection task on the 2017 val split of COCO [29].

L {σl}Ll=1 AP (%)
1 {0.01875} 38.07
1 {0.0375} 38.47
1 {0.075} 37.52
1 {0.15} 35.05
2 {0.025, 0.1} 38.97
2 {0.0375, 0.15} 39.05
2 {0.04375, 0.175} 39.07
2 {0.05, 0.2} 39.02
2 {0.0125, 0.025} 38.19
2 {0.025, 0.05} 38.65
2 {0.075, 0.15} 37.14
3 {0.0125, 0.025, 0.05} 38.61
3 {0.025, 0.05, 0.1} 38.95
3 {0.0375, 0.075, 0.15} 39.11
3 {0.04375, 0.0875, 0.175} 39.00
3 {0.05, 0.1, 0.2} 38.76
3 {0.0625, 0.125, 0.25} 37.96
3 {0.075, 0.15, 0.3} 37.42

C.3 Analysis of Proposal Distribution

An extensive ablation study for the number of components L and standard
deviations {σl}Ll=1 in the proposal distribution q(y|yi) =

1
L

∑L
l=1N (y; yi, σ

2
l )

(Eq. 5 in the paper) is provided in Table S1, which is an extended version of
Table 1 in the paper. We find that L = 1 downgrades performance, while
there is no significant difference between L = 2 and L = 3. For L ∈ {2, 3},
the results are not particularly sensitive to the specific choice of {σl}Ll=1, but
benefits from including both small and relatively large values in {σl}Ll=1.

C.4 Inference

The inference in both the Gaussian and Laplace models is identical to the one
employed by Faster-RCNN, except the output mean is taken as the prediction.
Thus, we do not utilize the output variances during inference. For the mix-
ture ofK = {2, 4, 8} Gaussians, we compute the mean of the distribution and
take that as our prediction. Instead picking the component with the largest
weight and taking its mean as the prediction resulted in somewhat worse val-
idation performance. For cVAE, we approximately compute the mean (using
128 samples) of the distribution and take that as our prediction.
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Table S2: Impact of L and {σl}Ll=1 in the proposal distribution q(y|yi) (Eq. 5 in the
paper), for the visual tracking task on the combined OTB [56] and NFS [57] datasets.

L {σl}Ll=1 OP0.50 (%) OP0.75 (%) AUC (%)
1 {0.05} 75.77 45.72 63.37
2 {0.01, 0.1} 77.25 46.09 61.48
2 {0.03, 0.3} 79.27 48.59 63.65
2 {0.05, 0.5} 79.90 48.71 64.10
2 {0.07, 0.7} 78.41 47.72 62.75

For IoU-Net and IoU-Net∗, we perform IoU-Guided NMS as described in [2],
followed by gradient-based refinement (Algorithm S1). For our proposed ap-
proach we adopt the same NMS technique, but guide it with the values fθ(x, y)
predicted by our network instead. We use a step-length λ = 0.5 and step-
length decay η = 0.1 for IoU-Net. For IoU-Net∗ and our approach we per-
form the gradient-based refinement in the relative bounding box parametriza-
tion y = (cx/w0, cy/h0, logw, logh) (see Section 4.1 in the paper). Here,
we employ different step-lengths for position and size. For IoU-Net∗, we use
λ = 0.002 and λ = 0.008 respectively, with a decay of η = 0.2. For our
proposed approach, we use λ = 0.0001 and λ = 0.0004 with η = 0.5. For
all methods, these hyperparameters (λ and η) were set using a grid search on
the COCO validation split (2017 val). We used T = 10 refinement iterations
for each of the three models. Note that since a given image x can have multi-
ple ground truth instances, multiple bounding boxes are usually refined. The
gradient-based refinement then moves each individual box y towards the max-
imum of a local mode in fθ(x, y). Thus, they will not converge to a single so-
lution. Also note that fθ(x, y) is class-conditional (as in the IoU-Net baseline),
eliminating the risk of confusing neighboring objects of different classes.

D Visual Tracking
Here, we provide further details about the training procedure and hyperparam-
eters used for our experiments on visual object tracking (Section 4.2 in the
paper).

D.1 Training

We adopt the ATOM [15] tracker as our baseline, and use the PyTorch imple-
mentation and pre-trained weights from [69]. ATOM trains an IoU-Net-based
module to predict the IoU overlap between a candidate box and the ground
truth, conditioned on the first-frame target appearance. The IoU predictor is
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trained by generating 16 candidates for each ground truth box. The candidates
are generated by adding a Gaussian noise for each ground truth box coordinate,
while ensuring a minimum IoU overlap of 0.1 between the candidate box and
the ground truth. The network is trained by minimizing the squared error (L2

loss) between the predicted and ground truth IoU.

Our proposed model is instead trained by sampling 128 candidate boxes from
a proposal distribution (Eq. 5 in the paper) generated by L = 2Gaussians with
standard deviations of 0.05 and 0.5, andminimizing the negative log likelihood
of the training data. An ablation study for the proposal distribution is found
in Table S2. We use the training splits of the TrackingNet [30], LaSOT [70],
GOT10k [71], and COCO datasets for our training. Our network is trained
for 50 epochs, using the ADAM optimizer with a base learning rate of 0.001
which is reduced by a factor of 5 after every 15 epochs. The rest of the training
parameters are exactly the same is in ATOM. The ATOM∗ model is trained by
using the exact same proposal distribution, datasets and settings. It only differs
by the loss, which is the same squared error between the predicted and ground
truth IoU as in the original ATOM.

D.2 Inference

During tracking, the ATOM tracker first applies the classification head net-
work, which is trained online, to coarsely localize the target object. 10 random
boxes are then sampled around this prediction, to be refined by the IoU pre-
diction network. We only alter the final bounding box refinement step of the
10 given random initial boxes, and preserve all other settings as in the original
ATOM tracker. The original version performs T = 5 gradient ascent iterations
with a step length of λ = 1.0. For our proposed model and the ATOM∗ version,
we use T = 10 iterations, employing the bounding box parameterization de-
scribed in Section 4.1. For our approach, we set the step length to λ = 2 ·10−4

for position and λ = 10−3 for size dimensions. For ATOM∗, we use λ = 10−2

for position and λ = 5 · 10−2 for size dimensions. These parameters were set
on the separate validation set. For simplicity, we adopt the vanilla gradient
ascent strategy employed in ATOM for the two other methods as well. That is,
we have no decay (η = 1) and do not perform checks whether the confidence
score is increasing in each iteration.

D.3 Qualitative Results

Illustrative examples of the target density p(y|x; θ) ∝ efθ(x,y) predicted by our
approach during tracking are visualized in Figure S2.
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Figure S2: Visualization of the conditional target density p(y|x; θ) ∝ efθ(x,y) pre-
dicted by our network for the task of bounding box estimation in visual tracking. Since
the target space y ∈ R4 is 4-dimensional, we visualize the density for different loca-
tions of the top-right corner as a heatmap, while the bottom-left is kept fixed at the
tracker output (red box). Our network predicts flexible densities which qualitatively
capture meaningful uncertainty in challenging cases.

Table S3: Impact of {σl}2l=1 in the proposal distribution q(y|yi) (Eq. 5 in the paper),
for the age estimation task on our validation split of the UTKFace [59] dataset.

{σl}2l=1 MAE
{0.1, 10} 7.62
{0.1, 20} 5.12
{0.01, 20} 5.36
{0.1, 40} 5.24

E Age Estimation
In this appendix, further details on the age estimation experiments (Section 4.3
in the paper) are provided.

E.1 Network Architecture

The DNN architecture fθ(x, y) of our proposed model first extracts ResNet50
features gx ∈ R2048 from the input image x. The age y is processed by four
fully-connected layers (dimensions: 1 → 16, 16 → 32, 32 → 64, 64 → 128),
generating gy ∈ R128. The two feature vectors gx, gy are then concatenated
to form gx,y ∈ R2048+128, which is processed by two fully-connected layers
(2048 + 128→ 2048, 2048→ 1), outputting fθ(x, y) ∈ R.

E.2 Training

Our model is trained using M = 1024 samples from a proposal distribu-
tion q(y|yi) (Eq. 5 in the paper) with L = 2 and variances σ2

1 = 0.12,
σ2
2 = 202. An ablation study for the variances is found in Table S3. The
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model is trained for 75 epochs with a batch size of 32, using the ADAM opti-
mizer with weight decay of 0.001. The images x are of size 200 × 200. For
data augmentation, we use random flipping along the vertical axis and random
scaling in the range [0.7, 1.4]. After random flipping and scaling, a random
image crop of size 200× 200 is also selected. The ResNet50 is imported from
torchvision.models in PyTorchwith the pretrained option set to true, all
other network parameters are randomly initialized using the default initializer
in PyTorch.

E.3 Prediction

For this experiment, we use a slight variation of Algorithm S1, which is found
in Algorithm S2. There, T is the number of gradient ascent iterations, λ is the
stepsize, Ω1 is an early-stopping threshold and Ω2 is a degeneration tolerance.
Following IoU-Net, we set T = 5, Ω1 = 0.001 and Ω2 = −0.01. Based on
the validation set, we select λ = 3. We refine a single estimate ŷ, predicted by
each baseline model.

Algorithm S2 Prediction via gradient-based refinement (variation).
Input: x⋆, ŷ, T , λ, Ω1, Ω2.
1: y ← ŷ.
2: for t = 1, . . . , T do
3: PrevValue← fθ(x

⋆, y).
4: y ← y + λ∇yfθ(x

⋆, y).
5: NewValue← fθ(x

⋆, y).
6: if |PrevValue − NewValue| < Ω1 or (NewValue −
PrevValue) < Ω2 then

7: Return y.
8: Return y.

E.4 Baselines

All baselines are trained for 75 epochs with a batch size of 32, using the ADAM
optimizer with weight decay of 0.001. Identical data augmentation and param-
eter initialization as for our proposed model is used.

Direct The DNN architecture of Direct first extracts ResNet50 features gx ∈
R2048 from the input image x. The feature vector gx is then processed by two
fully-connected layers (2048 → 2048, 2048 → 1), outputting the prediction
ŷ ∈ R. It is trained by minimizing either the Huber or L2 loss.
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Table S4: Full results for the age estimation experiments. Gradient-based refinement
using our proposed method consistently improves MAE (lower is better) for the age
predictions outputted by a number of baselines.

Method MAE
Niu et al. [60] 5.74 ± 0.05
Cao et al. [11] 5.47 ± 0.01
Direct - Huber 4.80 ± 0.06
Direct - Huber + Refinement 4.74 ± 0.06
Direct - L2 4.81 ± 0.02
Direct - L2 + Refinement 4.65 ± 0.02
Gaussian 4.79 ± 0.06
Gaussian + Refinement 4.66 ± 0.04
Laplace 4.85 ± 0.04
Laplace + Refinement 4.81 ± 0.04
Softmax - CE & L2 4.78 ± 0.05
Softmax - CE & L2 + Refinement 4.65 ± 0.04
Softmax - CE, L2 & Var 4.81 ± 0.03
Softmax - CE, L2 & Var + Refinement 4.69 ± 0.03

Gaussian The Gaussian model is defined using a DNN fθ(x) according to,

p(y|x; θ) = N
(
y;µθ(x), σ

2
θ(x)

)
,

fθ(x) = [µθ(x) logσ2
θ(x) ]

T ∈ R2.
(S3)

It is trained by minimizing the negative log-likelihood, corresponding to the
loss,

J(θ) =
1

n

n∑
i=1

(yi − µθ(xi))
2

σ2
θ(xi)

+ logσ2
θ(xi). (S4)

The DNN architecture of fθ(x) first extracts ResNet50 features gx ∈ R2048

from the input image x. The feature vector gx is then processed by two heads
of two fully-connected layers (2048→ 2048, 2048→ 1) to output µθ(x) and
logσ2

θ(x). The mean µθ(x) is taken as the prediction ŷ.

Laplace The Laplace model is defined using a DNN fθ(x) according to,

p(y|x; θ) = 1

2βθ(x)
exp

{
− |y − µθ(x)|

βθ(x)

}
,

fθ(x) = [µθ(x) logβθ(x) ]T ∈ R2.

(S5)

It is trained by minimizing the negative log-likelihood, corresponding to the
loss,

J(θ) =
1

n

n∑
i=1

|yi − µθ(xi)|
βθ(xi)

+ logβθ(xi). (S6)

I-32



The DNN architecture of fθ(x) first extracts ResNet50 features gx ∈ R2048

from the input image x. The feature vector gx is then processed by two heads
of two fully-connected layers (2048→ 2048, 2048→ 1) to output µθ(x) and
logβθ(x). The mean µθ(x) is taken as the prediction ŷ.

Softmax The DNN architecture of Softmax first extracts ResNet50 features
gx ∈ R2048 from the input image x. The feature vector gx is then processed
by two fully-connected layers (2048 → 2048, 2048 → C), outputting logits
for C = 101 discretized classes {0, 1, . . . , 100}. It is trained by minimizing
either the cross-entropy (CE) and L2 losses, J = JCE +0.1JL2 , or the CE, L2

and variance [10] losses, J = JCE + 0.1JL2 + 0.05JV ar. The prediction ŷ is
computed as the softmax expected value.

E.5 Full Results

Full experiment results, extending the results found in Table 4 (Section 4.3 in
the paper), are provided in Table S4.

F Head-Pose Estimation
In this appendix, further details on the head-pose estimation experiments (Sec-
tion 4.4 in the paper) are provided.

F.1 Network Architecture

The DNN architecture fθ(x, y) of our proposed model first extracts ResNet50
features gx ∈ R2048 from the input image x. The pose y ∈ R3 is processed
by four fully-connected layers (dimensions: 3 → 16, 16 → 32, 32 → 64,
64→ 128), generating gy ∈ R128. The two feature vectors gx, gy are then con-
catenated to form gx,y ∈ R2048+128, which is processed by two fully-connected
layers (2048 + 128→ 2048, 2048→ 1), outputting fθ(x, y) ∈ R.

F.2 Training

Our model is trained using M = 1024 samples from a proposal distribution
q(y|yi) (Eq. 5 in the paper) with L = 2 and variances σ2

1 = 12, σ2
2 = 202 for

yaw, pitch and roll. An ablation study for the variances is found in Table S5.
The model is trained for 75 epochs with a batch size of 32, using the ADAM
optimizer with weight decay of 0.001. The images x are of size 64× 64. For
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Table S5: Impact of {σl}2l=1 in the proposal distribution q(y|yi) (Eq. 5 in the paper),
for the head-pose estimation task on our validation split of the BIWI [62] dataset.

{σl}2l=1 Average MAE
{0.1, 20} 6.96
{1, 20} 5.08
{1, 30} 5.24
{2, 20} 7.02
{1, 10} 7.56

data augmentation, we use random flipping along the vertical axis and random
scaling in the range [0.7, 1.4]. After random flipping and scaling, a random
image crop of size 64 × 64 is also selected. The ResNet50 is imported from
torchvision.models in PyTorchwith the pretrained option set to true, all
other network parameters are randomly initialized using the default initializer
in PyTorch.

F.3 Prediction

For this experiment, we also use the prediction procedure detailed in Algo-
rithm S2. Again following IoU-Net, we set T = 5, Ω1 = 0.001 and
Ω2 = −0.01. Based on the validation set, we select λ = 0.1. We refine a
single estimate ŷ, predicted by each baseline model.

F.4 Baselines

All baselines are trained for 75 epochs with a batch size of 32, using the ADAM
optimizer with weight decay of 0.001. Identical data augmentation and param-
eter initialization as for our proposed model is used.

Direct The DNN architecture of Direct first extracts ResNet50 features gx ∈
R2048 from the input image x. The feature vector gx is then processed by two
fully-connected layers (2048 → 2048, 2048 → 3), outputting the prediction
ŷ ∈ R3. It is trained by minimizing either the Huber or L2 loss.

I-34



Table S6: Full results for the head-pose estimation experiments. Gradient-based re-
finement using our proposed method consistently improves the average MAE for yaw,
pitch, roll (lower is better) for the predicted poses outputted by a number of baselines.

Method Yaw MAE Pitch MAE Roll MAE Avg. MAE
Yang et al. [42] 4.24 4.35 4.19 4.26
Gu et al. [63] 3.91 4.03 3.03 3.66
Yang et al. [8] 2.89 4.29 3.60 3.60
Direct - Huber 2.78 ± 0.09 3.73 ± 0.13 2.90 ± 0.09 3.14 ± 0.07
Direct - Huber + Refine. 2.75 ± 0.08 3.70 ± 0.11 2.87 ± 0.09 3.11 ± 0.06
Direct - L2 2.81 ± 0.08 3.60 ± 0.14 2.85 ± 0.08 3.09 ± 0.07
Direct - L2 + Refine. 2.78 ± 0.08 3.62 ± 0.13 2.81 ± 0.08 3.07 ± 0.07
Gaussian 2.89 ± 0.09 3.64 ± 0.13 2.83 ± 0.09 3.12 ± 0.08
Gaussian + Refine. 2.84 ± 0.08 3.67 ± 0.12 2.81 ± 0.08 3.11 ± 0.07
Laplace 2.93 ± 0.08 3.80 ± 0.15 2.90 ± 0.07 3.21 ± 0.06
Laplace + Refine. 2.89 ± 0.07 3.81 ± 0.13 2.88 ± 0.06 3.19 ± 0.06
Softmax - CE & L2 2.73 ± 0.09 3.63 ± 0.13 2.77 ± 0.11 3.04 ± 0.08
Softmax - CE & L2 + Refine. 2.67 ± 0.08 3.61 ± 0.12 2.75 ± 0.10 3.01 ± 0.07
Softmax - CE, L2 & Var 2.83 ± 0.12 3.79 ± 0.10 2.84 ± 0.11 3.15 ± 0.07
Softmax - CE, L2 & Var + Refine. 2.76 ± 0.10 3.74 ± 0.09 2.83 ± 0.10 3.11 ± 0.06

Gaussian The Gaussian model is defined using a DNN fθ(x) according to,

p(y|x; θ) = N
(
y;µθ(x),Σθ(x)

)
, Σθ(x) = diag

(
σ2
θ(x)

)
,

y = [ y1 y2 y3 ]
T ∈ R3,

µθ(x) = [µ1,θ(x) µ2,θ(x) µ3,θ(x) ]
T ∈ R3,

σ2
θ(x) = [σ2

1,θ(x) σ2
2,θ(x) σ2

3,θ(x) ]
T ∈ R3,

fθ(x) = [µθ(x)
T logσ2

θ(x)
T ]T ∈ R6.

(S7)

It is trained by minimizing the negative log-likelihood, corresponding to the
loss,

J(θ) =
1

n

n∑
i=1

( 3∑
k=1

(yk,i − µk,θ(xi))
2

σ2
k,θ(xi)

+ logσ2
k,θ(xi)

)
. (S8)

The DNN architecture of fθ(x) first extracts ResNet50 features gx ∈ R2048

from the input image x. The feature vector gx is then processed by two heads
of two fully-connected layers (2048→ 2048, 2048→ 3) to output µθ(x) ∈ R3

and logσ2
θ(x) ∈ R3. The mean µθ(x) is taken as the prediction ŷ.
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Laplace Following [22], the Laplace model is defined using a DNN fθ(x)
according to,

p(y|x;θ)=
3∏

k=1

βk,θ(x)
−1

2 exp
{
− 1

2

( 3∑
k=1

(yk−µk,θ(x))
2

βk,θ(x)

) 1

2}
,

y = [ y1 y2 y3 ]
T ∈ R3,

µθ(x) = [µ1,θ(x) µ2,θ(x) µ3,θ(x) ]
T ∈ R3,

βθ(x) = [ β1,θ(x) β2,θ(x) β3,θ(x) ]
T ∈ R3,

fθ(x) = [µθ(x)
T logβθ(x)T ]T ∈ R6.

(S9)

It is trained by minimizing the negative log-likelihood, corresponding to the
loss,

J(θ)=
1

n

n∑
i=1

{( 3∑
k=1

(yk,i−µk,θ(xi))
2

βk,θ(xi)

) 1

2

+

3∑
k=1

logβk,θ(xi)
}
. (S10)

The DNN architecture of fθ(x) first extracts ResNet50 features gx ∈ R2048

from the input image x. The feature vector gx is then processed by two heads
of two fully-connected layers (2048→ 2048, 2048→ 3) to output µθ(x) ∈ R3

and logβθ(x) ∈ R3. The mean µθ(x) is taken as the prediction ŷ.

Softmax The DNN architecture of Softmax first extracts ResNet50 features
gx ∈ R2048 from the input image x. The feature vector gx is then processed
by three heads of two fully-connected layers (2048 → 2048, 2048 → C),
outputting logits for C = 151 discretized classes {−75,−74, . . . , 75} for the
yaw, pitch and roll angles (in degrees). It is trained by minimizing either the
cross-entropy (CE) and L2 losses, J = JCE + 0.1JL2 , or the CE, L2 and
variance [10] losses, J = JCE + 0.1JL2 + 0.05JV ar. The prediction ŷ is
obtained by computing the softmax expected value for yaw, pitch and roll.

F.5 Full Results

Full experiment results, extending the results found in Table 5 (Section 4.4 in
the paper), are provided in Table S6.
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How to Train Your Energy-Based
Model for Regression

Abstract
Energy-based models (EBMs) have become increasingly popular within com-
puter vision in recent years. While they are commonly employed for genera-
tive image modeling, recent work has applied EBMs also for regression tasks,
achieving state-of-the-art performance on object detection and visual tracking.
Training EBMs is however known to be challenging. While a variety of dif-
ferent techniques have been explored for generative modeling, the application
of EBMs to regression is not a well-studied problem. How EBMs should be
trained for best possible regression performance is thus currently unclear. We
therefore accept the task of providing the first detailed study of this problem.
To that end, we propose a simple yet highly effective extension of noise con-
trastive estimation, and carefully compare its performance to six popular meth-
ods from literature on the tasks of 1D regression and object detection. The
results of this comparison suggest that our training method should be consid-
ered the go-to approach. We also apply our method to the visual tracking task,
achieving state-of-the-art performance on five datasets. Notably, our tracker
achieves 63.7% AUC on LaSOT and 78.7% Success on TrackingNet. Code is
available at https://github.com/fregu856/ebms_regression.

1 Introduction
Energy-based models (EBMs) [1] have a rich history in machine learning [2, 3,
4, 5, 6]. An EBM specifies a probability density p(x; θ) = efθ(x)/

∫
efθ(x)dx

directly via a parameterized scalar function fθ(x). By defining fθ(x) using
a deep neural network (DNN), p(x; θ) becomes expressive enough to learn
practically any density from observed data. EBMs have therefore become in-
creasingly popular within computer vision in recent years, commonly being
applied for various generative image modeling tasks [7, 8, 9, 10, 11, 12, 13].
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Figure 1: We propose NCE+ to train EBMs p(y|x; θ) for tasks such as bounding box
regression. NCE+ is a highly effective extension of NCE, accounting for noise in
the annotation process of real-world datasets. Given a label yi (red box), the EBM
is trained by having to discriminate between yi + νi (yellow box) and noise samples
{y(i,m)}Mm=1 (blue boxes).

Recent work [14, 15] has also explored conditional EBMs as a general formula-
tion for regression, demonstrating particularly impressive performance on the
tasks of object detection [16, 17, 18] and visual tracking [19, 20, 21]. Regres-
sion entails predicting a continuous target y from an input x, given a training
set of observed input-target pairs. This was addressed in [14, 15] by learning
a conditional EBM p(y|x; θ), capturing the distribution of the target value y
given the input x. At test time, gradient ascent was then used to maximize
p(y|x; θ) w.r.t. y, producing highly accurate predictions. Regression is a fun-
damental problem within computer vision with many additional applications
[22, 23, 24, 25, 26], which all would benefit from such accurate predictions. In
this work, we therefore study the use of EBMs for regression in detail, aiming
to further improve its performance and applicability.

While the modeling capacity of EBMs makes them highly attractive for many
applications, training EBMs is known to be challenging. This is because the
EBM p(x; θ) = efθ(x)/

∫
efθ(x)dx involves an intractable integral, complicat-

ing the use of standard maximum likelihood (ML) learning. A variety of differ-
ent techniques have therefore been explored in the generative modeling litera-
ture, including alternative estimation methods [27, 13, 28, 29, 30] and approx-
imations based on Markov chain Monte Carlo (MCMC) [31, 10, 9, 12]. The
application of EBMs for regression is however not a particularly well-studied
problem. [14, 15] both applied importance sampling to approximate intractable
integrals, an approach known to scale poorly with the data dimensionality, and
considered no alternative techniques. How EBMs p(y|x; θ) should be trained
for best possible performance on computer vision regression tasks is thus an
open question, which we set out to investigate in this work.
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Contributions We propose a simple yet highly effective extension of noise
contrastive estimation (NCE) [27] to train EBMs p(y|x; θ) for regression tasks.
Our proposed method, termed NCE+, can be understood as a direct general-
ization of NCE, accounting for noise in the annotation process. We evaluate
NCE+ on illustrative 1D regression problems and on the task of bounding box
regression in object detection. We also provide a detailed comparison of NCE+
and six popular methods from previous work, the results of which suggest that
NCE+ should be considered the go-to training method. Lastly, we apply our
proposed NCE+ to the task of visual tracking, achieving state-of-the-art results
on five common datasets.

2 Energy-Based Models for Regression
We study the application of EBMs to important regression tasks in computer
vision, using energy-based models of the conditional density p(y|x). Here,
we first define the general regression problem and our employed EBM in Sec-
tion 2.1. Our prediction strategy based on gradient ascent is then described in
Section 2.2. Lastly, we discuss the challenges associated with training EBMs,
and describe six popular methods from the literature, in Section 2.3.

2.1 Problem & Model Definition

In a supervised regression problem, we are given a training setD of i.i.d. input-
target pairs, D = {(xi, yi)}Ni=1, (xi, yi) ∼ p(x, y). The task is then to learn
how to predict a target y⋆ ∈ Y given a new input x⋆ ∈ X . The target space
Y is continuous, Y = RK for some K ≥ 1, and the input space X usually
corresponds to the space of images.

As in [14, 15], we address this problem by creating an energy-based model
p(y|x; θ) of the conditional target density p(y|x). To that end, we specify a
DNN fθ : X × Y → R with model parameters θ ∈ RP . This DNN directly
maps any input-target pair (x, y) ∈ X ×Y to a scalar fθ(x, y) ∈ R. The model
p(y|x; θ) of the conditional target density is then defined as,

p(y|x; θ) = efθ(x,y)

Z(x, θ)
, Z(x, θ) =

∫
efθ(x,ỹ)dỹ, (1)

where the DNN output fθ(x, y) ∈ R is interpreted as the negative energy of
the density, and Z(x, θ) is the input-dependent normalizing partition function.
Since p(y|x; θ) in (1) is directly defined by the DNN fθ, minimal restricting
assumptions are put on the true p(y|x). The predictive power of the DNN can
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thus be fully exploited, enabling learning of, e.g., multi-modal and asymmet-
ric densities directly from data. This expressivity however comes at the cost
of Z(x, θ) being intractable, which complicates evaluating or sampling from
p(y|x; θ).

2.2 Prediction

At test time, the problem of predicting a target value y⋆ from an input x⋆
corresponds to finding a point estimate of the predicted conditional density
p(y|x⋆; θ). The most natural choice is to select the most likely target under
the model, y⋆ = argmaxy p(y|x⋆; θ) = argmaxy fθ(x⋆, y). The prediction y⋆

is thus obtained by directly maximizing the DNN scalar output fθ(x⋆, y) w.r.t.
y, not requiring Z(x⋆, θ) to be evaluated nor any samples from p(y|x⋆; θ) to
be generated. Following [14, 15], we estimate y⋆ = argmaxy fθ(x⋆, y) by
performing gradient ascent to refine an initial estimate ŷ and find a local max-
imum of fθ(x⋆, y). Starting at y = ŷ, we thus run T gradient ascent iterations,
y ← y + λ∇yfθ(x

⋆, y), with step-length λ. An algorithm for this prediction
procedure is found in the supplementary material.

2.3 Training

To train the DNN fθ(x, y) specifying the EBM (1), different techniques for
fitting a density p(y|x; θ) to observed data {(xi, yi)}Ni=1 can be used. In gen-
eral, the most commonly applied such technique is ML learning, which entails
minimizing the negative log-likelihood (NLL),

−
N∑
i=1

log p(yi|xi; θ) =
N∑
i=1

log
(∫

efθ(xi,y)dy

)
− fθ(xi, yi), (2)

w.r.t. the parameters θ. The integral in (2) is however intractable, and exact
evaluation of the NLL is thus not possible. [14, 15] employed importance
sampling to approximate such intractable integrals, obtaining state-of-the-art
performance on object detection and visual tracking. Recent work [13, 32, 33,
10, 12, 11] on generative image modeling has however applied a variety of dif-
ferent training methods not considered in [14, 15], including the ML learning
alternatives NCE [27] and score matching [28]. How we should train the DNN
fθ to obtain best possible regression performance is thus unclear. In this work,
we therefore carefully compare our proposed method to six popular training
methods from the literature.

MLwith Importance Sampling (ML-IS) A straightforward training method
is proposed in [14], which we term ML with Importance Sampling (ML-IS).
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Using ML-IS, [14] successfully applied the EBM (1) to the regression tasks
of object detection, visual tracking, age estimation and head-pose estimation.
In ML-IS, the DNN fθ is trained by directly minimizing the NLL (2) w.r.t. θ,
using importance sampling to approximate the intractable integral,

− log p(yi|xi; θ) ≈ log
(

1

M

M∑
m=1

efθ(xi,y(i,m))

q(y(i,m)|yi)

)
− fθ(xi, yi). (3)

Here, {y(i,m)}Mm=1 are M samples drawn from a proposal distribution q(y|yi)
that depends on the ground truth target yi. In [14], q(y|yi) is set to a mixture
ofK Gaussians centered at yi,

q(y|yi) =
1

K

K∑
k=1

N (y; yi, σ
2
kI). (4)

The loss J(θ) is obtained by averaging over all pairs {(xi, yi)}ni=1 in the current
mini-batch,

J(θ) =
1

n

n∑
i=1

log
(

1

M

M∑
m=1

efθ(xi,y(i,m))

q(y(i,m)|yi)

)
− fθ(xi, yi). (5)

KL Divergence with Importance Sampling (KLD-IS) Instead of mini-
mizing the NLL (2), [15] considers the Kullback-Leibler (KL) divergence
DKL(p(y|yi) ∥ p(y|xi; θ)) between the EBM p(y|xi; θ) and an assumed den-
sity p(y|yi) of the true target y given the label yi. The density p(y|yi) models
noise in the annotation process of our given training set D = {(xi, yi)}Ni=1. In
[15], p(y|yi) = N (y; yi, σ

2I), where σ is a hyperparameter. As shown in [15],

DKL(p(y|yi)∥p(y|xi; θ))= log
(∫

efθ(xi,y)dy

)
−
∫

fθ(xi, y)p(y|yi)dy + C,

(6)
where C is a constant that does not depend on θ. [15] approximates the inte-
grals in (6) using importance sampling, employing the ML-IS proposal q(y|yi)
in (4). By then averaging over all pairs {(xi, yi)}ni=1 in the current mini-batch,
the loss J(θ) used to train fθ is obtained as,

J(θ)=
1

n

n∑
i=1

log
(
1

M

M∑
m=1

efθ(xi,y(i,m))

q(y(i,m)|yi)

)
− 1

M

M∑
m=1

fθ(xi, y
(i,m))

p(y(i,m)|yi)
q(y(i,m)|yi)

,

(7)
where {y(i,m)}Mm=1 are M samples drawn from the proposal q(y|yi). We
term this training method KL Divergence with Importance Sampling (KLD-IS).
When applied to visual tracking in [15], KLD-IS outperformed ML-IS and set
a new state-of-the-art.
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MLwithMCMC (ML-MCMC) To minimize the negative log-likelihood (2)
w.r.t. the parameters θ, the following identity for the expression of the gradient
∇θ − log p(yi|xi; θ) can be utilized [1],

∇θ − log p(yi|xi; θ) = Ep(y|xi;θ)

[
∇θfθ(xi, y)

]
−∇θfθ(xi, yi). (8)

The expectation in (8) is then approximated using samples {y(i,m)}Mm=1 drawn
from p(y|xi; θ), i.e. from the EBM itself. To obtain each sample y(i,m) ∼
p(y|xi; θ), MCMC is used. Specifically, we follow recent work [7, 8, 10, 9,
12, 11] on generative image modeling and run L ≥ 1 steps of Langevin dy-
namics [34]. Starting at y(0), we thus update y(l) according to,

y(l+1) = y(l) +
α2

2
∇yfθ(xi, y(l)) + αϵl, ϵl ∼ N (0, I), (9)

and set y(i,m) = y(L). Here, α > 0 is a small constant step-length. Following
the principle of contrastive divergence [1, 31, 2], we start the Markov chain (9)
at the ground truth target, y(0) = yi. By approximating (8) with the samples
{y(i,m)}Mm=1, and by averaging over all pairs {(xi, yi)}ni=1 in the current mini-
batch, the loss J(θ) used to train the DNN fθ is obtained as,

J(θ) =
1

n

n∑
i=1

(
1

M

M∑
m=1

fθ(xi, y
(i,m))

)
− fθ(xi, yi). (10)

We term this specific training methodML with MCMC (ML-MCMC).

Noise Contrastive Estimation (NCE) As an alternative to ML learning, Gut-
mann and Hyvärinen proposed NCE [27] for estimating unnormalized para-
metric models. NCE entails generating samples from some noise distribution
pN , and learning to discriminate between these noise samples and observed
data examples. It has recently been applied to generative image modeling with
EBMs [13], and the NCE loss is also utilized in various frameworks for self-
supervised learning [35, 36, 37]. Moreover, NCE has been applied to train
EBMs for supervised classification tasks within language modeling [38, 39,
40, 41], where the target space Y is a large but finite set of possible labels. We
adopt NCE for regression by using a noise distribution pN (y|yi) of the same
form as the ML-IS proposal in (4),

pN (y|yi) =
1

K

K∑
k=1

N (y; yi, σ
2
kI), (11)

and by employing the ranking NCE objective [40], as described in [41]. We
choose ranking NCE over the binary objective since it is consistent under a
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weaker assumption [41]. We thus define y(i,0) ≜ yi, and train the DNN fθ by
minimizing the following loss,

J(θ) = − 1

n

n∑
i=1

log
exp

{
fθ(xi, y

(i,0))− log pN (y(i,0)|yi)
}∑M

m=0 exp
{
fθ(xi, y(i,m))− log pN (y(i,m)|yi)

} , (12)

where {y(i,m)}Mm=1 areM noise samples drawn from pN (y|yi) in (11).

Score Matching (SM) Another alternative estimation method is score match-
ing (SM), as proposed by Hyvärinen [28] and further studied for supervised
problems in [42]. The method focuses on the score of p(y|x; θ), defined as
∇y log p(y|x; θ) = ∇yfθ(x, y), aiming for it to approximate the score of the
true target density p(y|x). Note that the EBM score ∇yfθ(x, y) does not de-
pend on the intractable Z(x, θ). SM was applied to simple conditional density
estimation problems in [42], using a combination of feed-forward networks and
reproducing kernels to specify the EBM. Following [42], we train the DNN fθ
by minimizing the loss,

J(θ) =
1

n

n∑
i=1

tr
(
∇2

yfθ(xi, yi)
)
+

1

2

∥∥∇yfθ(xi, yi)
∥∥2
2
, (13)

where only the diagonal of∇2
yfθ(xi, yi) actually is needed to compute the first

term.

Denoising Score Matching (DSM) By modifying the SM objective, denois-
ing score matching (DSM) was proposed by Vincent [29]. DSM does not re-
quire computation of any second derivatives, improving its scalability to high-
dimensional data. The method entails employing SM on noise-corrupted data
points. Recently, DSM has been successfully applied to generative image mod-
eling [32, 30, 33]. DSM was also extended to train EBMs of conditional den-
sities in [43], where it was applied to a transfer learning problem. Following
[43], we use a Gaussian noise distribution and train the DNN fθ by minimizing
the loss,

J(θ) =
1

n

n∑
i=1

1

M

M∑
m=1

∥∥∥∥∇yfθ(xi, ỹ
(i,m)) +

ỹ(i,m) − yi
σ2

∥∥∥∥2
2

, (14)

where {ỹ(i,m)}Mm=1 are M samples drawn from the noise distribution
pσ(ỹ|yi) = N (ỹ; yi, σ

2I).

3 Proposed Training Method
To train the DNN fθ specifying our EBM p(y|x; θ) in (1), we propose a simple
yet highly effective extension of NCE [27]. Motivated by the improved per-
formance of KLD-IS compared to ML-IS on visual tracking [15], we extend
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NCE with the capability to model annotation noise. To that end, we adopt the
standard NCE noise distribution pN (11) and loss (12), but instead of defining
y(i,0) ≜ yi, we sample νi ∼ pβ(y) and define y(i,0) ≜ yi+νi. The distribution
pβ is a zero-centered version of pN in which {σk}Kk=1 are scaled with β > 0,

pN (y|yi) =
1

K

K∑
k=1

N (y; yi, σ
2
kI), pβ(y) =

1

K

K∑
k=1

N (y; 0, βσ2
kI). (15)

Instead of training the DNN fθ by learning to discriminate between noise sam-
ples {y(i,m)}Mm=1 and the label yi, it thus has to discriminate between the
samples {y(i,m)}Mm=1 and yi + νi. Examples of yi + νi and {y(i,m)}Mm=1 in
the task of bounding box regression are visualized in Figure 1. Similar to
KLD-IS, in which an assumed density of the true target value y given yi is
employed, our approach thus accounts for possible noise and inaccuracies in
the provided label yi. Specifically, our proposed training method entails sam-
pling {y(i,m)}Mm=1 ∼ pN (y|yi) and νi ∼ pβ(y), setting y(i,0) ≜ yi + νi, and
minimizing the following loss,

J(θ) = − 1

n

n∑
i=1

log
exp

{
fθ(xi, y

(i,0))− log pN (y(i,0)|yi)
}∑M

m=0 exp
{
fθ(xi, y(i,m))− log pN (y(i,m)|yi)

} . (16)

As β → 0, samples νi ∼ pβ(y) will concentrate increasingly close to zero,
and the standard NCE method is in practice recovered. Our proposed training
method can thus be understood as a direct generalization of NCE. Compared
to NCE, our method adds no significant training cost and requires tuning of
a single additional hyperparameter β. A value for β is selected in a simple
two-step procedure. First, we fix y(i,0) = yi and select the standard deviations
{σk}Kk=1 based on validation set performance, just as in NCE. We then fix
{σk}Kk=1 and vary β to find the value corresponding to maximum validation
performance. Typically, we start this ablation with β = 0.1. We term our
proposed training method NCE+.

4 Comparison of Training Methods
We provide a detailed comparison of the six training methods from Section 2.3
and our proposedNCE+. To that end, we perform extensive experiments on 1D
regression (Section 4.1) and object detection (Section 4.2). Our findings are
summarized in Section 4.3. All experiments are implemented in PyTorch [44]
and the code is publically available. For both tasks, further details and results
are also provided in the supplementary material.
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Table 1: Comparison of training methods for the 1D regression experiments.

ML-IS ML-MCMC-1 ML-MCMC-16 ML-MCMC-256 KLD-IS NCE SM DSM NCE+
DKL ↓ 0.062 0.865 0.449 0.106 0.088 0.068 0.781 0.395 0.066
Training Cost ↓ 0.44 0.54 2.41 30.8 0.44 0.45 0.60 0.47 0.46
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Figure 2: Detailed comparison of the
top-performing methods for the illustra-
tive 1D regression experiments. NCE
and NCE+ here demonstrate clear supe-
rior performance for small number of
samplesM .
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Figure 3: Detailed comparison of the
top-performing methods for object detec-
tion, on the 2017 val split of COCO [45].
Missing values for ML-IS and KLD-IS
correspond to failed training due to nu-
merical issues.

4.1 1D Regression Experiments

We first perform experiments on illustrative 1D regression problems. The
DNN fθ(x, y) is here a simple feed-forward network, taking x ∈ R and y ∈ R
as inputs. We employ two synthetic datasets, and evaluate the training methods
by how well the learned model p(y|x; θ) (1) approximates the known ground
truth p(y|x), as measured by the KL divergence DKL.

Results A comparison of all seven training methods in terms of DKL and
training cost (seconds per epoch) is found in Table 1. For ML-MCMC, we
include results for L ∈ {1, 16, 256} Langevin steps (9). We observe that ML-
IS, KLD-IS, NCE and NCE+ clearly have the best performance. While ML-
MCMC is relatively close in terms of DKL for L = 256, this comes at the
expense of a massive increase in training cost. DSM outperforms SM in terms
of both metrics, but is not close to the top-performing methods. The four best
methods are further compared in Figure 2, showing DKL as a function of M .
Here, we observe that NCE and NCE+ significantly outperform ML-IS and
KLD-IS for small number of samplesM .
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Table 2: Comparison of training methods for the object detection experiments, on the
2017 test-dev split of COCO [45]. Our proposed NCE+ achieves the best performance.

ML-IS ML-MCMC-1 ML-MCMC-4 ML-MCMC-8 KLD-IS NCE DSM NCE+
AP (%) ↑ 39.4 36.4 36.4 36.4 39.6 39.5 36.3 39.7
AP50(%) ↑ 58.6 57.9 57.9 58.0 58.6 58.6 57.9 58.7
AP75(%) ↑ 42.1 38.8 39.0 39.0 42.6 42.4 38.9 42.7
Training Cost ↓ 1.03 2.47 7.05 13.3 1.02 1.04 3.84 1.09

4.2 Object Detection Experiments

Next, we evaluate the methods on the task of bounding box regression in ob-
ject detection. We employ an identical network architecture for fθ(x, y) as in
[14]. An extra network branch, consisting of three fully-connected layers with
parameters θ, is thus added onto a pre-trained and fixed FPN Faster-RCNN
detector [46]. Given an image x and bounding box y ∈ R4, the image is
first processed by the detector backbone network (ResNet50-FPN), outputting
image features h1(x). Using a differentiable PrRoiPool [47] layer, h1(x) is
then pooled to extract features h2(x, y). Finally, h2(x, y) is processed by the
added network branch, outputting fθ(x, y) ∈ R. As in [14], predictions y⋆ are
produced by performing guided NMS [47] followed by gradient-based refine-
ment (Section 2.2), taking the Faster-RCNN detections as initial estimates ŷ.
Experiments are performed on the large-scale COCO dataset [45]. We use the
2017 train split (≈ 118 000 images) for training, the 2017 val split (≈ 5 000
images) for setting hyperparameters, and report results on the 2017 test-dev
split (≈ 20 000 images). The standard COCO metrics AP, AP50 and AP75 are
used, where AP is the primary metric.

Results A comparison of the training methods in terms of the COCO met-
rics and training cost (seconds per iteration) is found in Table 2. Since DSM
clearly outperformed SM in the 1D regression experiments, we here only in-
clude DSM. For ML-MCMC, results for L ∈ {1, 4, 8} are included. We ob-
serve that ML-IS, KLD-IS, NCE and NCE+ clearly have the best performance.
In terms of the COCOmetrics, NCE+ outperforms NCE and all other methods.
ML-IS is also outperformed by KLD-IS. The four top-performing methods are
further compared in Figure 3, in terms of AP as a function of the number of
samplesM . NCE and NCE+ here demonstrate clear superior performance for
small values of M , and do not experience numerical issues even for M = 1.
KLD-IS improves this robustness compared ML-IS, but is not close to match-
ing NCE or NCE+. In terms of training cost, the four top-performing methods
are virtually identical. For ML-IS, e.g., we observe in Figure 4 that setting
M = 1 decreases the training cost with 23% compared to the standard case of
M = 128.

Analysis of NCE+ Hyperparameters How the value of β > 0 in pβ (15)
affects validation performance is studied in Figure 5. Here, we observe that
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Table 3: Ablation study for NCE, on the 2017 val split of COCO [45].

{σk}3k=1 {0.0125, 0.025, 0.05} {0.025, 0.05, 0.1} {0.05, 0.1, 0.2} {0.075, 0.15, 0.3} {0.1, 0.2, 0.4}

AP (%) ↑ 38.58 38.95 39.12 39.17 39.05

quite a large range of values improve the performance compared to the NCE
baseline (β → 0), before it eventually degrades for β ≳ 0.3. We also observe
that the performance is optimized for β = 0.1. In Figure 5, the standard devi-
ations {σk}Kk=1 in pN , pβ (15) are set to {0.075, 0.15, 0.3}. These values are
selected in an initial step based on an ablation study for NCE, which is found
in Table S4.

4.3 Discussion

The results on both set of experiments are highly consistent. First of all, ML-
IS, KLD-IS, NCE and NCE+ are by far the top-performing training methods.
ML-MCMC, the method commonly employed for generative image modeling
in recent years, does not come close to matching these top-performing meth-
ods, especially not given similar computational budgets. When studying the
performance as a function of the number of samples M , NCE and NCE+ are
the superior methods by a significant margin. In particular, this study demon-
strates that the NCE and NCE+ losses are numerically more stable than those
ofML-IS and KLD-IS. In the 1D regression problems, which employ synthetic
datasets without any annotation noise, NCE and NCE+ have virtually identical
performance. In the object detection experiments however, where we employ
real-world datasets, NCE+ consistently improves the NCE performance. On
object detection, NCE+ also improves or matches the performance of KLD-IS,
which explicitly models annotation noise and outperformsML-IS. Overall, the
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results of the comparison suggest that our proposed NCE+ should be consid-
ered the go-to training method.

5 Visual Tracking Experiments
Lastly, we apply our proposed NCE+ to the task of visual tracking. Specifi-
cally, we consider generic visual object tracking, which entails estimating the
bounding box y ∈ R4 of a target object in every frame of a video. The target
object does not belong to any pre-specified class, but is instead defined by a
given bounding box in the initial video frame. We compare the performance
both to NCE and KLD-IS, and to state-of-the-art trackers. Code and trained
models are available at [48]. Further details are also found in the supplemen-
tary material.

Tracking Approach We base our tracker on the recent DiMP [21] and
PrDiMP [15]. The target object is thus first coarsely localized in the current
video frame via 2D image-coordinate regression of its center point, empha-
sizing robustness over accuracy. Then, the full bounding box y ∈ R4 of the
target is accurately regressed by gradient-based refinement (Section 2.2). The
two stages employ separate network branches which are trained jointly end-
to-end. As a strong baseline, we combine the DiMP method for center point
regression with the PrDiMP bounding box regression approach. We term this
resulting tracker DiMP-KLD-IS. By also modifying common training parame-
ters (batch size, data augmentation etc.), DiMP-KLD-IS significantly outper-
forms both DiMP and PrDiMP. Our proposed tracker, termed DiMP-NCE+, is
then obtained simply by using NCE+ instead of KLD-IS to train the bounding
box regression branch. In both cases, the number of samplesM = 128. As in
[21, 15], the training splits of TrackingNet [49], LaSOT [50], GOT-10k [51]
and COCO [45] are used for training. Similar to PrDiMP, our DiMP-NCE+
tracker runs at about 30 FPS on a single GPU.

Results We evaluate DiMP-NCE+ on five commonly used tracking datasets.
Tracking-Net [49] is a large-scale dataset containing videos sampled from
YouTube. Results are reported on its test set of 511 videos. We also evaluate
on the LaSOT [50] test set, containing 280 long videos (2 500 frames on aver-
age). Moreover, we report results on the UAV123 [52] dataset, consisting of
123 videos which feature small targets and distractor objects. Results are also
reported on the 30 FPS version of the need for speed (NFS) [53] dataset, con-
taining 100 videos with fast motions. Finally, we evaluate on the 100 videos
of OTB-100 [54]. Our tracker is evaluated in terms of overlap precision (OP).
For a threshold T ∈ [0, 1], OPT is the percentage of frames in which the IoU
overlap between the estimated and ground truth target bounding box is larger
than T . By averaging OPT over T ∈ [0, 1], the AUC score is then obtained.
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Table 4: Results for the visual tracking experiments. The AUC (Success) metric is re-
ported on five common datasets. Our DiMP-NCE+ tracker significantly outperforms
strong baselines and achieves state-of-the-art performance on all datasets. For SiamR-
CNN [55], results for the ResNet50 version are given in parentheses when available.

MDNet UPDT DaSiamRPN ATOM SiamRPN++ DiMP SiamRCNN PrDiMP DiMP- DiMP- DiMP-
[56] [57] [58] [20] [19] [21] [55] [15] KLD-IS NCE NCE+

TrackingNet 60.6 61.1 63.8 70.3 73.3 74.0 81.2 75.8 78.1 77.1 78.7
LaSOT 39.7 - - 51.5 49.6 56.9 64.8 (62.3) 59.8 63.1 62.8 63.7
UAV123 52.8 54.5 57.7 63.2 61.3 64.3 64.9 66.7 66.6 65.2 67.2
NFS 42.2 53.7 - 58.4 - 62.0 63.9 63.5 64.7 64.3 65.0
OTB-100 67.8 70.2 65.8 66.9 69.6 68.4 70.1 (68.0) 69.6 70.1 69.3 70.7

For TrackingNet, the term Success is used in place of AUC. Results in terms
of AUC on all five datasets are found in Table 4. To ensure significance, the
average AUC over 5 runs is reported for our trackers. We observe that DiMP-
NCE+ consistently outperforms both our DiMP-KLD-IS baseline, and a vari-
ant employing NCE instead of NCE+. Compared to previous approaches, only
the very recent SiamRCNN [55] achieves results competitive with our DiMP-
NCE+. SiamRCNN is however slower than DiMP-NCE+ (5 FPS vs 30 FPS)
and employs a larger backbone network (ResNet101 vs ResNet50). Results for
the ResNet50 version of SiamRCNN are only available on two of the datasets,
on which it is outperformed by our DiMP-NCE+. More detailed results are
provided in the supplementary material.

6 Conclusion
We proposed a simple yet highly effective extension of NCE to train EBMs
p(y|x; θ) for computer vision regression tasks. Our proposed method NCE+
can be understood as a direct generalization of NCE, accounting for noise in
the annotation process of real-world datasets. We also provided a detailed com-
parison of NCE+ and six popular methods from literature, the results of which
suggest that NCE+ should be considered the go-to training method. This com-
parison is the first comprehensive study of how EBMs should be trained for
best possible regression performance. Finally, we applied our proposed NCE+
to the task of visual tracking, achieving state-of-the-art performance on five
commonly used datasets. We hope that our simple training method and promis-
ing results will encourage the research community to further explore the appli-
cation of EBMs to various regression tasks.
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Supplementary Material
In this supplementary material, we provide additional details and results. It
consists of Appendix A - Appendix D. Appendix A contains a detailed algo-
rithm for our employed prediction strategy. Further experimental details are
provided in Appendix B for 1D regression, and in Appendix C for object de-
tection. Lastly, Appendix D contains details and further results for the visual
tracking experiments. Note that equations, tables, figures and algorithms in
this supplementary document are numbered with the prefix “S”. Numbers with-
out this prefix refer to the main paper.

A Prediction Algorithm
Our prediction procedure (Section 2.2) is detailed in Algorithm S1, where λ
denotes the gradient ascent step-length, η is a decay of the step-length and T
is the number of iterations.

Algorithm S1 Prediction via gradient-based refinement.
Input: x⋆, ŷ, T , λ, η.
1: y ← ŷ.
2: for t = 1, . . . , T do
3: PrevValue← fθ(x

⋆, y).
4: ỹ ← y + λ∇yfθ(x

⋆, y).
5: NewValue← fθ(x

⋆, ỹ).
6: if NewValue > PrevValue then
7: y ← ỹ.
8: else
9: λ← ηλ.
10: Return y.

B 1D Regression
Here, we provide details on the two synthetic datasets, the network architec-
ture, the evaluation procedure, and hyperparameters used for our 1D regression
experiments (Section 4.1). For all seven training methods, the DNN fθ(x, y)
was trained (byminimizing the associated loss J(θ)) for 75 epochs with a batch
size of 32 using the ADAM [59] optimizer.
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Figure S1: Visualization
of the true p(y|x) for the
first 1D regression dataset.

Figure S2: Training data
{(xi, yi)}2000i=1 for the first
1D regression dataset.

Figure S3: Training data
{(xi, yi)}2000i=1 for the sec-
ond 1D regression dataset.

B.1 Datasets

The ground truth p(y|x) for the first dataset is visualized in Figure S1. It is
defined by a mixture of two Gaussian components (with weights 0.2 and 0.8)
for x < 0, and a log-normal distribution (with µ = 0.0, σ = 0.25) for x ≥
0. The training data D1 = {(xi, yi)}2000i=1 was generated by uniform random
sampling of x in the interval [−3, 3], and is visualized in Figure S2. The ground
truth p(y|x) for the second dataset is defined according to,

p(y|x) = N
(
y;µ(x), σ2(x)

)
,

µ(x) = sin(x), σ(x) = 0.15(1 + e−x)−1.
(S1)

The training data D2 = {(xi, yi)}2000i=1 was generated by uniform random sam-
pling of x in the interval [−3, 3], and is visualized in Figure S3.

B.2 Network Architecture

The DNN fθ(x, y) is a feed-forward network taking x ∈ R and y ∈ R as inputs.
It consists of two fully-connected layers (dimensions: 1 → 10, 10 → 10) for
x, one fully-connected layer (1 → 10) for y, and four fully-connected layers
(20 → 10, 10 → 10, 10 → 10, 10 → 1) processing the concatenated (x, y)
feature vector.

B.3 Evaluation

The training methods are evaluated in terms of the KL divergence
DKL(p(y|x) ‖ p(y|x; θ)) between the learned EBM p(y|x; θ) =
efθ(x,y)/

∫
efθ(x,ỹ)dỹ and the true conditional density p(y|x). To approximate

DKL(p(y|x) ‖ p(y|x; θ)), we compute efθ(x,y) and p(y|x) for all (x, y) pairs
in a 2048 × 2048 uniform grid in the region {(x, y) ∈ R2 : x ∈ [−3, 3], y ∈
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[−3, 3]}. We then normalize across all values associated with each x, employ
the formula for KL divergence between two discrete distributions q1(y) and
q2(y),

DKL(q1 ∥ q2) =
∑
y∈Y

q1(y) log
q1(y)

q2(y)
, (S2)

and finally average over all 2048 values of x. For each dataset and training
method, we independently train the DNN fθ(x, y) and computeDKL(p(y|x) ∥
p(y|x; θ)) 20 times. We then take the mean of the 5 best runs, and finally
average this value for the two datasets.

B.4 Hyperparameters

The number of samples M = 1024 for all applicable training methods. All
other hyperparameters were selected to optimize the performance, evaluated
according to Section B.3.

ML-IS Following [14], we set K = 2 in the proposal distribution q(y|yi) in
(4). After ablation, we set σ1 = 0.2, σ2 = 1.6.

KLD-IS We use the same proposal distribution q(y|yi) as for ML-IS. After
ablation, we set σ = 0.025 in p(y|yi) = N (y; yi, σ

2I).

ML-MCMC After ablation, we set the Langevin dynamics step-length α =
0.05.

NCE To match ML-IS, we set K = 2 in the noise distribution pN (y|yi) in
(11). After ablation, we set σ1 = 0.1, σ2 = 0.8.

DSM After ablation, we set σ = 0.2 in pσ(ỹ|yi) = N (ỹ; yi, σ
2I).

NCE+ We use the same noise distribution pN (y|yi) as for NCE. After ablation,
we set β = 0.025.

B.5 Qualitative Results

An example of p(y|x; θ) trained using NCE on the first dataset is visualized in
Figure S4. As can be observed, this is quite close to the true p(y|x) visualized
in Figure S1. Similar results are obtained with all four top-performing train-
ing methods. Examples of p(y|x; θ) instead trained using DSM and SM are
visualized in Figure S5 and Figure S6, respectively. These do not approximate
the true p(y|x) quite as well, matching the worse performance in terms ofDKL
reported in Table 1.
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Figure S4: Example of
p(y|x; θ) trained with NCE.

Figure S5: Example of
p(y|x; θ) trained with DSM.

Figure S6: Example of
p(y|x; θ) trained with SM.

Table S1: Used step-lengths λpos and λsize for the object detection experiments.

ML-IS ML-MCMC-1 ML-MCMC-4 ML-MCMC-8 KLD-IS NCE DSM NCE+
λpos 0.0004 0.000025 0.000025 0.000025 0.0004 0.0004 0.000025 0.0008
λsize 0.0016 0.0001 0.0001 0.0001 0.0016 0.0016 0.0001 0.0032

C Object Detection
Here, we provide details on the prediction procedure and hyperparameters used
for our object detection experiments (Section 4.2). We employ an identical net-
work architecture and training procedure as described in [14], only modifying
the loss when using a different method than ML-IS to train fθ(x, y).

C.1 Prediction

Predictions y� are produced by performing guided NMS [47] followed by
gradient-based refinement (Algorithm S1), taking the Faster-RCNN detections
as initial estimates ŷ. As in [14], we run T = 10 gradient ascent iterations. We
fix the step-length decay to η = 0.5, which is the value used in [14]. For each
trained model, we select the gradient ascent step-length λ to optimize perfor-
mance in terms of AP on the 2017 val split of COCO [45]. Like [14], we use
different step-lengths for the bounding box position (λpos) and size (λsize). We
start this ablation with λpos = 0.0001, λsize = 0.0004. The used step-lengths
for all training methods are given in Table S1.

C.2 Hyperparameters

The number of samplesM = 128 for all applicable training methods. All other
hyperparameters were selected to optimize performance in terms of AP on the
2017 val split of COCO [45].

ML-IS Following [14], we set K = 3 in the proposal distribution q(y|yi) in
(4) with σ1 = 0.0375, σ2 = 0.075, σ3 = 0.15.
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Table S2: Ablation study for KLD-IS, on
the 2017 val split of COCO [45].

σ 0.0075 0.015 0.0225 0.03 0.0375

AP (%) ↑ 38.32 39.19 39.38 39.33 39.23

Table S3: Ablation study for ML-
MCMC-1, on the val split of COCO [45].

α 0.000001 0.00001 0.0001

AP (%) ↑ 36.14 36.19 36.04

Table S4: Ablation study for NCE, on the 2017 val split of COCO [45].

{σk}3k=1 {0.0125, 0.025, 0.05} {0.025, 0.05, 0.1} {0.05, 0.1, 0.2} {0.075, 0.15, 0.3} {0.1, 0.2, 0.4}

AP (%) ↑ 38.58 38.95 39.12 39.17 39.05

KLD-IS We use the same proposal distribution q(y|yi) as forML-IS. Based on
the ablation study in Table S2, we set σ = 0.0225 in p(y|yi) = N (y; yi, σ

2I).

ML-MCMC Based on the ablation study in Table S3, we set the Langevin
dynamics step-length α = 0.00001.

NCE To match ML-IS, we set K = 3 in the noise distribution pN (y|yi) in
(11). Based on the ablation study in Table S4, we set σ1 = 0.075, σ2 = 0.15,
σ3 = 0.3.

DSM Based on the ablation study in Table S5, we set σ = 0.075 in pσ(ỹ|yi) =
N (ỹ; yi, σ

2I).

NCE+ We use the same noise distribution pN (y|yi) as for NCE. Based on the
ablation study in Table S6, we set β = 0.1.

C.3 Detailed Results

A comparison of the training methods on the 2017 val split of COCO [45] is
provided in Table S7.

D Visual Tracking
Here, we provide detailed results and hyperparameters for our visual tracking
experiments (Section 5). We employ an identical network architecture, train-

Table S5: Ablation study for DSM, on
the 2017 val split of COCO [45].

σ 0.0375 0.075 0.15

AP (%) ↑ 36.11 36.12 36.05

Table S6: Ablation study for NCE+, on
the 2017 val split of COCO [45].

β 0.05 0.1 0.15

AP (%) ↑ 39.27 39.36 39.32
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Table S7: Comparison of training methods for the object detection experiments, on
the 2017 val split of COCO [45]. NCE+ and KLD-IS achieve the best performance.

ML-IS ML-MCMC-1 ML-MCMC-4 ML-MCMC-8 KLD-IS NCE DSM NCE+
AP (%) ↑ 39.11 36.19 36.24 36.25 39.38 39.17 36.12 39.36
AP50(%) ↑ 57.95 57.34 57.45 57.28 58.07 57.96 57.29 57.99
AP75(%) ↑ 41.97 38.77 38.81 38.88 42.47 42.07 38.84 42.63
Training Cost ↓ 1.03 2.47 7.05 13.3 1.02 1.04 3.84 1.09

ing procedure and prediction procedure for DiMP-KLD-IS, DiMP-NCE and
DiMP-NCE+, only the loss is modified.

D.1 Training Parameters

DiMP-KLD-IS is obtained by combining the DiMP [21] method for center
point regression with the PrDiMP [15] bounding box regression approach, and
modifying a few training parameters. Specifically, we change the batch size
from 10 to 20, we change the LaSOT sampling weight from 0.25 to 1.0, we
change the number of samples per epoch from 26 000 to 40 000, and we add
random horizontal flipping with probability 0.5. Since we increase the batch
size, we also freeze conv1, layer1 and layer2 of the ResNet backbone to save
memory.

D.2 Hyperparameters

The number of samplesM = 128 for all three training methods.

DiMP-KLD-IS Following PrDiMP, we setK = 2 in the proposal distribution
q(y|yi) in (4) with σ1 = 0.05, σ2 = 0.5, and we set σ = 0.05 in p(y|yi) =
N (y; yi, σ

2I).

DiMP-NCE Matching DiMP-KLD-IS, we setK = 2 in the noise distribution
pN (y|yi) in (11) with σ1 = 0.05, σ2 = 0.5. A quick ablation study on the vali-

Table S8: Full results on the TrackingNet [49] test set, in terms of precision, nor-
malized precision, and success (AUC). Our proposed DiMP-NCE+ is here only out-
performed by the very recent SiamRCNN [55]. SiamRCNN is however slower than
DiMP-NCE+ (5 FPS vs 30 FPS) and employs a larger backbone network (ResNet101
vs ResNet50).

SiamFC MDNet UPDT DaSiamRPN ATOM SiamRPN++ DiMP SiamRCNN PrDiMP DiMP- DiMP- DiMP-
[60] [56] [57] [58] [20] [19] [21] [55] [15] KLD-IS NCE NCE+

Precision ↑ 53.3 56.5 55.7 59.1 64.8 69.4 68.7 80.0 70.4 73.3 69.8 73.7
Norm. Prec. ↑ 66.6 70.5 70.2 73.3 77.1 80.0 80.1 85.4 81.6 83.5 82.4 83.7
Success (AUC)
↑

57.1 60.6 61.1 63.8 70.3 73.3 74.0 81.2 75.8 78.1 77.1 78.7
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Figure S7: Success plot on LaSOT [50].
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Figure S8: Success plot on UAV123 [52].
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Figure S9: Success plot on NFS [53].
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Figure S10: Success plot on OTB-100 [54].

dation set of GOT-10k [51] did not find values of σ1, σ2 resulting in improved
performance.

DiMP-NCE+ We use the same noise distribution pN (y|yi) as for NCE.We set
β = 0.1, as this corresponded to the best performance on the object detection
experiments (Table S6).

D.3 Detailed Results

Full results on the TrackingNet [49] test set, in terms of all three TrackingNet
metrics, are found in Table S8. Success plots for LaSOT, UAV123, NFS and
OTB-100 are found in Figure S7-S10, showing the overlap precision OPT as
a function of the overlap threshold T .

II-25





Paper III

Title
Learning Proposals for Practical Energy-Based Regression

Authors
Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Schön

Edited version of
F. K. Gustafsson, M. Danelljan, and T. B. Schön. “Learning Proposals for Practical
Energy-Based Regression.” In: Proceedings of the International Conference on Arti-
ficial Intelligence and Statistics (AISTATS). 2022





Learning Proposals for Practical
Energy-Based Regression

Abstract
Energy-based models (EBMs) have experienced a resurgence within machine
learning in recent years, including as a promising alternative for probabilis-
tic regression. However, energy-based regression requires a proposal distri-
bution to be manually designed for training, and an initial estimate has to be
provided at test-time. We address both of these issues by introducing a con-
ceptually simple method to automatically learn an effective proposal distri-
bution, which is parameterized by a separate network head. To this end, we
derive a surprising result, leading to a unified training objective that jointly
minimizes the KL divergence from the proposal to the EBM, and the negative
log-likelihood of the EBM. At test-time, we can then employ importance sam-
pling with the trained proposal to efficiently evaluate the learned EBM and
produce stand-alone predictions. Furthermore, we utilize our derived train-
ing objective to learn mixture density networks (MDNs) with a jointly trained
energy-based teacher, consistently outperforming conventional MDN training
on four real-world regression tasks within computer vision. Code is available
at https://github.com/fregu856/ebms_proposals.

1 Introduction
Energy-based models (EBMs) [1] have been extensively studied within the
field of machine learning in the past [2, 3, 4, 5, 6]. By using deep neural
networks to parameterize the energy function [7], EBMs have recently also
experienced a significant resurgence. Most widely, EBMs are now employed
for generative modelling tasks [8, 10, 11, 12, 13, 14, 15, 16, 17, 9]. Recent
work has further demonstrated the promise of EBMs for probabilistic regres-
sion, achieving impressive results for a variety of important low-dimensional
regression tasks, including object detection, visual tracking, pose estimation,
age estimation and robot policy learning [18, 19, 20, 21, 22, 23, 24].
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y

x

f(x,y)

g(x)

Figure 1: We propose a method to automatically learn an effective MDN proposal
q(y|x;φ) (blue) during training of the EBM p(y|x; θ) (green), thus addressing the main
practical limitations of energy-based regression. The MDN q is trained by minimizing
its KL divergence to the EBM p, i.e. by minimizing DKL

(
p ‖ q

)
.

Probabilistic regression aims to estimate the predictive conditional distribu-
tion p(y|x) of the target y given the input x [25, 26, 27, 28, 29, 30, 31].
As its primary advantage, the EBM directly represents this distribution by a
neural network through a learnable energy function fθ(x, y), as p(y|x; θ) =
efθ(x,y)/Z(x, θ). While this flexibility allows the EBM to learn highly com-
plex and accurate distributions, it comes at a significant cost. Firstly, evaluat-
ing the resulting distribution p(y|x; θ) is generally intractable, as it requires the
computation of the partition function Z(x, θ). This particularly imposes chal-
lenges for training the EBM, which often leads to application of Monte Carlo
approximations with hand-tuned proposal distributions in order to pursue max-
imum likelihood-based learning. Secondly, EBMs are known to be difficult
to sample from, which complicates their practical use at test-time. To produce
predictions, prior work [18, 19, 20, 21] resort to gradient-based refinement of
an initial estimate generated by a separately trained network.

In this work, we address both aforementioned drawbacks of this energy-based
regression approach by jointly learning a proposal distribution q during EBM
training. Specifically, we parametrize the proposal using a mixture density
network (MDN) [32] q(y|x;φ) conditioned on the input x. In order to maxi-
mize its effectiveness during training, we learn q by minimizing its Kullback–
Leibler (KL) divergence to the EBM p. To this end, we derive a surprising re-
sult, consisting of a unified objective that jointly minimizes the KL divergence
from the proposal q to the EBM p and the negative log-likelihood (NLL) of
the latter. As our result does not rely on the reparameterization trick, it is di-
rectly applicable to a wide class of proposal distributions, including mixture
models. Compared to previous approaches for training EBMs for regression,
our approach does not require tedious hand-tuning of the proposal distribution,
instead providing a fully learnable alternative. Moreover, rather than condi-
tioning on the ground-truth target y, our proposal distribution q is conditioned
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on the input x. It can therefore be employed at test-time to efficiently evaluate
and sample from the EBM.

Learning the MDN q according to our derived objective leads to another inter-
esting observation: MDNs trained to mimic the EBM via this objective tend
to learn more accurate predictive distributions compared to an MDN trained
with the standard NLL loss. Inspired by this finding, we apply our derived
result for a second purpose, namely to find a better learning formulation for
MDNs. When jointly trained with an energy-based teacher network according
to our objective, the resulting MDN is shown to consistently outperform the
NLL baseline on challenging real-world regression tasks. In contrast to a sin-
gle ground-truth sample, the EBM provides comprehensive supervision for the
predictive distribution q, leading to a more accurate model of the underlying
true distribution.

In summary, our main contributions are as follows:

• We derive an efficient and convenient objective that can be employed
to train a parameterized distribution q(y|x;ϕ) by directly minimizing its
KL divergence to a conditional EBM.

• We employ the proposed objective to jointly learn an effective MDN pro-
posal distribution during EBM training, thus addressing the main practi-
cal limitations of energy-based regression.

• We further utilize the proposed objective to improve training of stand-
alone MDNs, learning more accurate predictive distributions compared
to MDNs trained by minimizing the NLL.

• We perform comprehensive experiments on four challenging computer
vision regression tasks.

2 Background
Regression entails learning to predict targets y⋆ ∈ Y from inputs x⋆ ∈ X ,
given a training set of N i.i.d. input-target pairs {(xi, yi)}Ni=1, (xi, yi) ∼
p(x, y). The target space Y is continuous, Y = RK for some K ≥ 1. We
focus on probabilistic regression, which aims to not only produce a predic-
tion y⋆, but also estimate the full predictive conditional distribution p(y|x).
This probabilistic formulation provides a more general view of the regression
problem, allowing for the encapsulation of uncertainty, generation of multiple
hypotheses, and handling of ill-posed settings [25, 26, 27, 28, 29, 30, 31].
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2.1 Energy-Based Regression

In energy-based regression [18, 19, 20], the task is addressed by learning to
model the distribution p(y|x) with a conditional EBM p(y|x; θ), defined ac-
cording to,

p(y|x; θ) = efθ(x,y)

Z(x, θ)
, Z(x, θ) =

∫
efθ(x,ỹ)dỹ . (1)

The EBM p(y|x; θ) is directly specified via fθ : X × Y → R, a deep neu-
ral network (DNN) mapping any input-target pair (x, y) ∈ X × Y to a scalar
fθ(x, y) ∈ R. The EBM in (1) is therefore highly flexible and capable of
learning complex distributions directly from data. However, the resulting dis-
tribution p(y|x; θ) is also challenging to evaluate or sample from, since its par-
tition functionZ(x, θ) generally is intractable. The EBM p(y|x; θ) is therefore
quite challenging to train, and a variety of different approaches have recently
been explored [20, 33]. The most straightforward approach would be to di-
rectly minimize the NLL L(θ) =

∑N
i=1 logZ(xi, θ)− fθ(xi, yi). While exact

computation of L(θ) is intractable, importance sampling can be utilized to ap-
proximate the logZ(xi, θ) term. The DNN fθ(x, y) can therefore be trained
by minimizing the resulting loss,

J(θ) =
1

N

N∑
i=1

log
(

1

M

M∑
m=1

efθ(xi,y
(m)
i )

q(y
(m)
i )

)
− fθ(xi, yi) , (2)

where {y(m)
i }Mm=1 ∼ q(y) are M samples drawn from a proposal distribution

q(y). The aforementioned approach is relatively simple, yet it has been shown
effective for various regression tasks within computer vision [18, 19, 20]. In
these works, the proposal q(y) is set to a mixture of K Gaussian components
centered at the true target yi, i.e. q(y) = 1

K

∑K
k=1N (y; yi, σ

2
kI). Training thus

requires the task-dependent hyperparameters K and {σ2
k}Kk=1 to be carefully

tuned, limiting general applicability. Moreover, this proposal q(y) depends on
yi and can therefore only be utilized during training. To produce a prediction
y⋆ at test-time, previous energy-based regression methods [18, 19, 20, 21, 22,
23] employ gradient ascent to refine an initial estimate ŷ. This prediction strat-
egy therefore requires access to a good initial estimate. Hence, most previous
works [18, 19, 20, 21] even rely on a separately trained DNN to provide ŷ,
further limiting general applicability.

2.2 Mixture Density Networks

Alternatively, the regression task can be addressed by learning to model the
conditional distribution p(y|x) with an MDN q(y|x;ϕ) [32, 30, 34, 31]. An
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MDN is a mixture ofK components of a certain base distribution. Specifically
for a Gaussian MDN, the distribution q(y|x;ϕ) is defined according to,

q(y|x;ϕ) =
K∑
k=1

π
(k)
ϕ (x)N

(
y;µ

(k)
ϕ (x), σ

(k)
ϕ (x)I

)
, (3)

where the set of Gaussianmixture parameters {π(k)
ϕ , µ

(k)
ϕ , σ

(k)
ϕ }

K
k=1 is outputted

by a DNN gϕ(x). In contrast to EBMs, the MDN distribution q(y|x;ϕ) is by
design simple to both evaluate and sample from. The DNN gϕ(x) can thus
be trained by directly minimizing the NLL L(ϕ) =

∑N
i=1− log q(yi|xi;ϕ).

While MDNs generally are less flexible models than EBMs, they are still ca-
pable of capturing multi-modality and other more complex features of the true
distribution p(y|x). MDNs thus offer a convenient yet quite flexible alterna-
tive to EBMs. Training an MDN q(y|x;ϕ) via the NLL is however known
to occasionally suffer from certain inefficiencies such as mode-collapse, and
various more sophisticated training methods have therefore been explored [35,
36, 30, 37, 38].

3 Method
We first address the main practical limitations of energy-based regression by
proposing a method to automatically learn an effective proposal q(y;ϕ) during
training of the EBM p(y|x; θ) in (1). To enable q(y;ϕ) to be utilized also
at test-time, we condition it on the input x instead of on the true target yi.
We further require the resulting proposal distribution q(y|x;ϕ) to be flexible,
yet efficient and convenient to evaluate and sample from. In this work, we
therefore parametrize the proposal q(y|x;ϕ) using an MDN.

When training the EBM p(y|x; θ) by minimizing the approximated NLL in (2),
we wish to use the proposal q(y|x;ϕ) that yields the best possible NLL approx-
imation. In general, this is achieved when the proposal equals the EBM, i.e.
when q(y|x;ϕ) = p(y|x; θ)1. We therefore aim to learn the proposal param-
eters ϕ by directly minimizing the KL divergence to the EBM, DKL(p ∥ q).
While this approach is conceptually simple and attractive, exact computation
of DKL(p ∥ q) is intractable. This calls for an effective and efficient approxi-
mation, which can easily be employed during training. In Section 3.1 we show
that such an approximation, interestingly enough, is achieved by simply mini-
mizing the objective (2) w.r.t. the proposal q(y|x;ϕ).

In Section 3.2, we further employ this result to design a method for jointly
learning the EBM p(y|x; θ) and MDN proposal q(y|x;ϕ). There, we also de-
tail how q(y|x;ϕ) can be utilized with importance sampling to approximately

1Details are provided in the supplementary material.
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evaluate and sample from the EBM at test-time. Lastly, in Section 3.3 we pro-
pose to utilize our derived approximation of DKL(p ∥ q) as an additional loss
for training MDNs. We argue that guiding an MDN towards a more flexible
and accurate distribution learned by the EBM provides more extensive super-
vision for the MDN in a regression setting, leading to improved results.

3.1 Learning the Proposal to Match an EBM

We have a parameterized distribution q(y|x;ϕ) that we want to be a close
approximation of the EBM p(y|x; θ). Specifically, we want to find the pa-
rameters ϕ that minimize the KL divergence between q(y|x;ϕ) and the EBM
p(y|x; θ). Therefore, we seek to compute ∇ϕDKL

(
p(y|x; θ) ∥ q(y|x;ϕ)

)
, i.e.

the gradient of the KL divergence w.r.t. ϕ. The gradient ∇ϕDKL is generally
intractable, but can be conveniently approximated by the following result.

Result 1. For a conditional EBM p(y|x; θ) = efθ(x,y)/
∫
efθ(x,ỹ)dỹ and distri-

bution q(y|x;ϕ),

∇ϕDKL
(
p ∥ q

)
≈ ∇ϕ log

(
1

M

M∑
m=1

efθ(x,y
(m))

q(y(m)|x;ϕ)

)
, (4)

where {y(m)}Mm=1 areM independent samples drawn from q(y|x;ϕ).

A complete derivation of Result 1 is provided in the supplementary material.
Note that the samples {y(m)}Mm=1 in (4) are drawn from q(y|x;ϕ) but not
considered functions of ϕ, making this approximation particularly simple to
compute in practice. Importantly, the approximation (4) does not rely on the
reparameterization trick and is therefore directly applicable for a wide class
of distributions q(y|x;ϕ), including mixture models. Given data {xi}Ni=1, Re-
sult 1 implies that q(y|x;ϕ) can be trained to approximate the EBM p(y|x; θ)
by minimizing the loss,

JKL(ϕ) =
1

N

N∑
i=1

log
(

1

M

M∑
m=1

efθ(xi,y
(m)
i )

q(y
(m)
i |xi;ϕ)

)
, (5)

where {y(m)
i }Mm=1 ∼ q(y|xi;ϕ). Note that JKL(ϕ) is identical to the first term

of the EBM loss J(θ) in (2). In fact, since the second term fθ(xi, yi) in (2)
does not depend on ϕ, (2) can be used as a joint objective for training both
q(y|x;ϕ) and the EBM p(y|x; θ).
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3.2 Practical Energy-Based Regression

We first employ our Result 1 to jointly train the EBM p(y|x; θ) =
efθ(x,y)/

∫
efθ(x,ỹ)dỹ and the MDN proposal q(y|x;ϕ). We define the MDN

q(y|x;ϕ) by adding a second network head gϕ onto the same backbone feature
extractor shared with the EBM DNN fθ. The MDN head gϕ outputs the Gaus-
sian mixture model parameters {π(k)

ϕ , µ
(k)
ϕ , σ

(k)
ϕ }

K
k=1, as defined in (3). The

resulting overall network architecture is illustrated in Figure 1.

Training

We train the EBM p(y|x; θ) and MDN proposal q(y|x;ϕ) jointly using stan-
dard techniques based on stochastic gradient descent. At each iteration, we
first predict the MDN mixture parameters {π(k)

ϕ , µ
(k)
ϕ , σ

(k)
ϕ }

K
k=1 and draw M

samples {y(m)
i }Mm=1∼q(y|xi;ϕ) from the resulting distribution. The MDN pa-

rameters ϕ are then updated via JKL(ϕ) in (5), while the EBM parameters θ are
updated via J(θ) in (2). In fact, this can be implemented by jointly minimizing
(2) w.r.t. both θ and ϕ.

EBMs can however be trained also via various alternative approaches, includ-
ing noise contrastive estimation (NCE) [39, 40]. How EBMs should be trained
specifically for regression tasks was extensively studied in [20], concluding
that NCE should be considered the go-to method. NCE entails training the
EBM DNN fθ by minimizing the loss,

JNCE(θ) = −
1

N

N∑
i=1

J
(i)
NCE(θ),

J
(i)
NCE(θ)= log

exp
{
fθ(xi, y

(0)
i )−log q(y(0)i )

}
M∑

m=0
exp

{
fθ(xi, y

(m)
i )−log q(y(m)

i )
} , (6)

where y
(0)
i ≜ yi, and {y(m)

i }Mm=1 are M samples drawn from a noise distri-
bution q(y). The NCE loss JNCE(θ) in (6) can be interpreted as the softmax
cross-entropy loss for a classification problem, distinguishing the true target
yi from the M noise samples {y(m)

i }Mm=1 ∼ q(y). Moreover, JNCE(θ) has
much similarity with the importance sampling-based loss J(θ) in (2) [40, 41].
In particular, the noise distribution q(y) in NCE directly corresponds to the
the proposal q in (2). In fact, all prior work [20, 21, 22] on energy-based re-
gression using NCE has employed the same manually designed distribution
q(y) = 1

K

∑K
k=1N (y; yi, σ

2
kI). Due to the close relationship between NCE

and importance sampling, our approach for learning the proposal distribution
q is also applicable for NCE-based training of the EBM. In this work, we there-
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Ground Truth EBM MDN Proposal

Figure 2: An illustrative 1D regression problem [20], demonstrating the effectiveness
of our proposedmethod to jointly train an EBM p(y|x; θ) andMDN proposal q(y|x;φ).
In this example, the MDN has K = 4 components. The EBM is trained using NCE
with q(y|x;φ) acting as the noise distribution, whereas the MDN is trained by mini-
mizing its KL divergence to p(y|x; θ), i.e. by minimizing DKL

(
p ‖ q

)
.

fore adopt the NCE loss to train the EBM p(y|x; θ), since it has been shown to
achieve favorable results [20].

Our approach still entails jointly training the EBM p(y|x; θ) and MDN
q(y|x;φ), but employs NCE with q(y|x;φ) acting as a noise distribution for
training the EBM. At each iteration we thus draw samples {y(m)

i }Mm=1 ∼
q(y|xi;φ), update φ via the loss JKL(φ) in (5), and update θ via JNCE(θ) in
(6). Note that the update of the MDN parameters φ only affects the added
network head in Figure 1, not the feature extractor. The effectiveness of this
proposed joint trainingmethod is demonstrated on an illustrative 1D regression
problem in Figure 2. In the supplementary material (Figure S3), we also show
an example of how both the EBM and the MDN proposal iteratively converge
towards the ground truth during joint training.

Training an EBM using our joint training method is somewhat slower than us-
ing standard NCE with the manually designed q(y) = 1

K

∑K
k=1N (y; yi, σ

2
kI),

since we now also have to update the added network head gφ of the MDN pro-
posal at each iteration. For both methods, the main computational bottleneck is
however the backbone feature extractor. In fact, our proposed method usually
requires less total training in practice, since the task-dependent hyperparame-
tersK and {σ2

k}Kk=1 have to be tuned for the NCE baseline.

Prediction

To avoid evaluating the intractable Z(x�, θ) at test-time, previous work
on energy-based regression [18, 19, 20, 21] approximately compute
argmaxy p(y|x�; θ) = argmaxy fθ(x�, y) to produce a prediction y�. Specif-
ically, T steps of gradient ascent, y ← y + λ∇yfθ(x

�, y), is used to refine
an initial estimate ŷ, moving it towards a local maximum of fθ(x�, y). While
shown to produce highly accurate predictions, this approach requires a good
initial estimate ŷ to be provided at test-time, limiting its general applicability.
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Figure 3: We extend our method of jointly training an EBM p(y|x; θ) (green) and
MDN q(y|x;φ) (blue), improving MDN training. Instead of defining the MDN by
adding a network head onto the EBM (Figure 1), the MDN is now defined in terms of
a full DNN gφ.

In contrast to previous work [18, 19, 20, 21], we have access to a proposal
q(y|x;φ) that is conditioned only on the input x and thus can be utilized also at
test-time. Since our MDN proposal q(y|x;φ) has been trained to approximate
the EBM p(y|x; θ), it can be utilized with self-normalized importance sam-
pling [42] to efficiently approximate expectations Ep w.r.t. the EBM p(y|x; θ),

Ep[ξ(y)]=

∫
ξ(y)p(y|x; θ)dy ≈

M∑
m=1

w(m)ξ
(
y(m)

)
,

w(m) =
efθ(x,y

(m))/q(y(m)|x;φ)∑M
l=1 e

fθ(x,y(l))/q(y(l)|x;φ)
.

(7)

Here, {y(m)}Mm=1 ∼ q(y|x;φ) are samples drawn from theMDN proposal, and
ξ(y) is the quantity over which we are taking the expectation. For example,
setting ξ(y) = y in (7) enables us to approximately compute the EBM mean.
In this manner, we can thus directly produce a stand-alone prediction y� for the
EBM p(y|x; θ). Using the same technique, we can also estimate the variance
of the EBM as a measure of its uncertainty.

Note that we can also draw approximate samples from the EBM p(y|x; θ) by
re-sampling with replacement from the set {y(m)}Mm=1 ∼ q(y|x;φ) of proposal
samples, drawing each y(m) with probability w(m) [43]. We demonstrate this
sampling technique in Figure S4 in the supplementary material. There, we
observe that the technique produces accurate EBM samples even when the
proposal is unimodal and thus not a particularly close approximation of the
EBM.
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3.3 Improved MDN Training

Lastly, we employ Result 1 to improve the training of MDNs q(y|x;ϕ). We
simply extend our proposed approach for jointly training an EBM p(y|x; θ)
and MDN proposal q(y|x;ϕ) from Section 3.2. Instead of defining the MDN
by adding a network head onto the EBM (Figure 1), we now define q(y|x;ϕ)
in terms of a full DNN gϕ, as illustrated in Figure 3. Now, we thus train two
separate DNNs fθ and gϕ. As in Section 3.2, we train the EBM p(y|x; θ) and
MDN q(y|x;ϕ) jointly. At each iteration, we draw samples {y(m)

i }Mm=1 ∼
q(y|xi;ϕ) and update θ via the loss JNCE(θ) in (6). The EBM is thus trained
using NCE with the MDN acting as a noise distribution. At each iteration, we
also update the MDN parameters ϕ via the loss,

JMDN(ϕ) =
1

N

N∑
i=1

1

2
log

(
1

M

M∑
m=1

efθ(xi,y
(m)
i )

q(y
(m)
i |xi;ϕ)

)
− 1

2
log q(yi|xi;ϕ). (8)

The MDN q(y|x;ϕ) is thus trained by minimizing a sum of its NLL
− log q(yi|xi;ϕ) and the JKL(θ) loss in (5). Compared to conventional MDN
training, we thus employ our approximation of DKL(p ∥ q) as an additional
loss, guiding q(y|x;ϕ) towards the EBM p(y|x; θ).

In contrast to MDNs, EBMs are not restricted to distributions which are con-
venient to evaluate and sample. The EBM p(y|x; θ) is thus generally a more
flexible model than q(y|x;ϕ) and therefore able to better approximate the un-
derlying true distribution p(y|x). Compared to MDNs, which define a dis-
tribution q(y|x;ϕ) by mapping x to the set {π(k)

ϕ , µ
(k)
ϕ , σ

(k)
ϕ }

K
k=1, the EBM

p(y|x; θ) = efθ(x,y)/
∫
efθ(x,ỹ)dỹ also offers a more direct representation of

the distribution via its scalar function fθ(x, y), potentially leading to a more
straightforward learning problem. Therefore, we argue that guiding the MDN
q(y|x;ϕ) towards the EBM p(y|x; θ) during training via the loss JMDN(ϕ) in
(8) should help mitigate some of the known inefficiencies of MDN training.
We note that our proposed joint training approach is twice as slow compared
to conventional MDN training, as two separate DNNs fθ and gϕ are updated
at each iteration. After training, the EBM can however be discarded and does
therefore not affect the computational cost of the MDN at test-time.

4 Related Work
Our proposed approach to automatically learn a proposal during EBM train-
ing is related to the work of [44, 45, 46, 47], training EBMs for generative
modelling tasks by jointly learning an auxiliary sampler via adversarial train-
ing. We instead train conditional EBMs for regression and are able to derive a
particularly convenient KL divergence approximation (Result 1).
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Table 1: Results for the EBM 1D regression experiments. Results are in terms of
approximate KL divergence for the first dataset [20], and in terms of approximate
NLL for the second [58].

NCE Ours
Dataset σ1=0.05 σ1=0.1 σ1=0.2 σ1=0.4 σ1=0.8 K=1 K=4 K=16

[20] 0.042 0.036 0.040 0.042 0.042 0.038 0.032 0.035
[58] 2.30 1.98 1.72 1.67 1.70 1.69 1.67 1.65

Our approach is also inspired by the concept of cooperative learning [48, 49, 50,
51], which entails jointly training an EBM and a generator network viaMarkov
chain Monte Carlo (MCMC) teaching. Specifically, the generator serves as a
proposal and provides initial samples which are refined via MCMC to approx-
imately sample from the EBM, training the EBM via contrastive divergence.
Then, the generator network is trained to match these refined MCMC samples
using a standard regression loss. Cooperative learning has recently also been
extended to train EBMs for conditional generative modelling tasks [52, 53].
While our proposed method also entails jointly training conditional EBMs and
proposals, we specifically study the important application of low-dimensional
regression. In this setting, MCMC-based training of EBMs has been shown
highly inefficient [20]. By deriving Result 1, we can instead employ the more
effective training method of NCE, and train the proposal by directly minimiz-
ing its KL divergence to the EBM. Since MCMC is not employed, our pro-
posed method is also computationally efficient, and very simple to implement,
compared to cooperative learning.

Our method to improve the training of an MDN by guiding it towards an EBM
is related to [15], who train a generative flow-based model jointly with an
EBM through a minimax game. In contrast, our joint training method is non-
adversarial and can even be implemented by directly minimizing one unified
objective. On a conceptual level, our MDN training approach is also related
to work on teacher-student networks and knowledge distillation [54, 55, 56,
57]. In a knowledge distillation problem, a teacher network is utilized to im-
prove the performance of a more lightweight student network. While knowl-
edge distillation for regression is not a particularly well-studied topic, it has
been studied for image-based regression tasks in very recent work [57]. A
student network is there enhanced by augmenting its training set with images
and pseudo targets generated by a conditional GAN and a pre-trained teacher
network, respectively. In contrast, our approach entails distilling the condi-
tional EBM distribution p(y|x; θ) into a student MDN for each example in the
original training set. Furthermore, our approach trains the teacher EBM and
studentMDN jointly, where the studentMDN generates proposal samples used
for training the EBM teacher.
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Table 2: Results in terms of approximate NLL for the EBM steering angle prediction
experiments.

NCE Ours
σ1=0.1, σ2=20 σ1=1, σ2=20 σ1=2, σ2=20 σ1=1, σ2=10 σ1=1, σ2=40 K=4

1.59±0.08 1.51±0.05 1.56±0.04 2.03±0.14 1.39±0.02 1.58±0.13

5 Experiments
We perform comprehensive experiments on illustrative 1D regression prob-
lems and four image-based regression tasks, which are all detailed below. We
first evaluate our proposed method for automatically learning an effective pro-
posal during EBM training in Section 5.1. There, we compare our EBM train-
ing method with NCE, achieving highly competitive performance across all
five tasks without having to tune any task-dependent hyperparameters. In Sec-
tion 5.2, we then evaluate our proposed approach for training MDNs. Com-
pared to conventional MDN training, we consistently obtain improved test
log-likelihoods. All experiments are implemented in PyTorch [59]. Example
model and training code is found in the supplementary material, and our com-
plete implementation is also made publicly available. All models were trained
on individual NVIDIA TITAN Xp GPUs.

1D Regression We study two illustrative 1D regression problems with x ∈ R
and y ∈ R. The first dataset is specified in [20] and contains 2 000 training
examples. It is visualized in Figure 2. The second dataset is specified in [58],
containing 1 900 test examples and 1 700 examples for training.

Steering Angle Prediction Here, we are given an image x from a forward-
facing camera mounted inside of a car. The task is to predict the corresponding
steering angle y ∈ R of the car at that moment. We utilize the dataset from [60,
61], containing 12 271 examples. We randomly split the dataset into training
(80%) and test (20%) sets. All images x are of size 64× 64.

Cell-Count Prediction Given a synthetic fluorescence microscopy image x,
the task is here to predict the number of cells y ∈ R+ in the image. We utilize
the dataset from [60, 61], which consists of 200 000 grayscale images of size
64×64. From this dataset, we randomly draw 10 000 images each to construct
training and test sets. An example image x is visualized in Figure 1.

Age Estimation In age estimation, we are given an image x of a person’s face
and are tasked with predicting the age y ∈ R+ of this person. We utilize the
UTKFace [62] dataset, specifically the processed version provided by [60, 61].
This dataset contains 14 760 examples, which we randomly split into training
(80%) and test (20%) sets. All images x are of size 64× 64.
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Table 3: Results in terms of approximate NLL for the EBM cell-count prediction
experiments.

NCE Ours
σ1=0.1, σ2=40 σ1=1, σ2=40 σ1=2, σ2=40 σ1=1, σ2=20 σ1=1, σ2=80 K=4

2.71±0.07 2.64±0.05 2.65±0.05 3.12±0.37 2.70±0.05 2.66±0.03

Table 4: Results in terms of approximate NLL for the EBM age estimation experi-
ments.

NCE Ours
σ1=0.01, σ2=20 σ1=0.1, σ2=20 σ1=1, σ2=20 σ1=0.1, σ2=10 σ1=0.1, σ2=40 K=4

4.18±0.30 3.81±0.18 4.13±0.48 3.97±0.21 4.47±0.25 4.30±0.30

Head-Pose Estimation In this case, we are given an image x of a person, and
the task is to predict the orientation y ∈ R3 of this person’s head. Here, y is
the yaw, pitch and roll angles of the head. We utilize the BIWI [63] dataset,
specifically the processed version provided by [64]. We employ protocol 2 as
defined in [64], giving 5 065 test images and 10 613 images for training. All
images x are of size 64× 64.

5.1 EBM Experiments

We first evaluate our proposed method for automatically learning an effective
proposal during EBM training, by performing extensive experiments on all
five regression tasks.

1D Regression The EBM DNN fθ(x, y) is here a simple feed-forward net-
work, taking x ∈ R and y ∈ R as inputs. Separate sets of fully-connected
layers extract features hx ∈ R10 from x and hy ∈ R10 from y. The two fea-
ture vectors are then concatenated and processed to output fθ(x, y) ∈ R. The
MDN network head gϕ(x) takes the feature hx ∈ R10 as input and outputs
{π(k)

ϕ , µ
(k)
ϕ , σ

(k)
ϕ }

K
k=1. We use the ADAM [65] optimizer to jointly train fθ

and gϕ. For the first dataset, we follow [20] and evaluate the training meth-
ods in terms of how close the EBM p(y|x; θ) is to the known ground truth
p(y|x), as measured by the (approximately computed) KL divergence. For the
second dataset [58] we approximately compute the test set NLL of the EBM
p(y|x; θ), by evaluating fθ(x, y) at densely sampled y values in an interval
[ymin, ymax]. We compare our proposed approach with training the EBM using
NCE, employing the noise distribution q(y) = 1

2

∑2
k=1N (y; yi, σ

2
kI). Fol-

lowing [20], we set σ1 = 0.1, σ2 = 8σ1. We also report results for the values
σ1 ∈ {0.05, 0.2, 0.4, 0.8}. For our proposed approach, we report results for
using K ∈ {1, 4, 16} components in the MDN proposal. We train 20 net-
works for each setting and dataset, and report the mean of the 5 best runs. The
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Table 5: Results in terms of approximate NLL for the EBM head-pose estimation
experiments.

NCE Ours
σ1=0.1, σ2=20 σ1=1, σ2=20 σ1=2, σ2=20 σ1=1, σ2=10 σ1=1, σ2=40 K=4

13.68±0.10 10.99±0.29 10.85±0.11 10.73±0.19 11.20±0.15 9.51±0.07

results are found in Table 1. We observe that our proposed training method
achieves highly competitive performance for all values of K. For NCE, the
performance varies quite significantly with σ1, which would have to be tuned
for each dataset.

Image-Based Regression We employ a virtually identical network architec-
ture for all four image-based regression tasks, only making minor modifica-
tions for the head-pose estimation task to accommodate the higher target di-
mension y ∈ R3. The EBM DNN fθ(x, y) is composed of a ResNet18 [66]
that extracts features hx ∈ R512 from the input image x. From the target
y, fully-connected layers extract features hy ∈ R128. After concatenation of
hx and hy, fully-connected layers then output fθ(x, y) ∈ R. The MDN net-
work head gϕ(x) takes the image features hx ∈ R512 as input and outputs
{π(k)

ϕ , µ
(k)
ϕ , σ

(k)
ϕ }

K
k=1. Again, we use ADAM to jointly train fθ and gϕ. We

evaluate the training methods by approximately computing the test set NLL of
the EBM p(y|x; θ). We compare our proposed approach with training the EBM
using NCE, employing the noise distribution q(y) = 1

2

∑2
k=1N (y; yi, σ

2
kI).

For each of the four tasks, we initially set {σ1, σ2} to what was used for age es-
timation and head-pose estimation in [19] and then carefully tune them further.
Based on the 1D regression results in Table 1, we use K = 4 components in
the MDN proposal for our proposed approach. We train 20 networks for each
setting and dataset, and report themean of the 5 best runs. The results are found
in Table 2 to Table 5. We observe that our proposed training method achieves
highly competitive performance. In particular, our method significantly out-
performs the NCE baseline on the more challenging head-pose estimation task
(Table 5), which has a multi-dimensional target space. Note that we use an
identical architecture for the MDN proposal in our training method across all
four tasks, while the task-dependent NCE hyperparameters {σ1, σ2} are tuned
directly on each of the corresponding test sets. Thus, NCE is here a very strong
baseline.

5.2 MDN Experiments

Lastly, we perform experiments on the four image-based regression tasks
to evaluate our proposed approach for training MDNs q(y|x;ϕ). For the
EBM DNN fθ(x, y), an identical network architecture is used as in the EBM
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Table 6: Results in terms of NLL for the MDN experiments on four image-based
regression tasks.

NLL Ours
Task K=4 K=8 K=16 K=4 K=8 K=16

Steering angle 1.45±0.13 1.25±0.05 - 1.00±0.03 1.01±0.04 -
Cell-count 2.80±0.09 2.90±0.06 - 2.80±0.06 2.75±0.06 -
Age 4.88±0.21 4.71±0.35 - 3.57±0.28 3.65±0.18 -
Head-pose 11.02±0.16 10.68±0.39 10.71±0.17 8.69±0.10 8.79±0.06 8.77±0.09

experiments (Section 5.1). The MDN network gϕ(x) is now a full DNN.
It consists of a ResNet18 that extracts image features hx ∈ R512, and a
head of fully-connected layers that takes hx ∈ R512 as input and outputs
{π(k)

ϕ , µ
(k)
ϕ , σ

(k)
ϕ }

K
k=1. As described in Section 3.3, theMDNDNN gϕ is trained

by minimizing the loss JMDN(ϕ) in (8), whereas fθ is trained via JNCE(θ) in
(6). As in the previous experiments, ADAM is used to jointly train fθ and
gϕ. We compare our proposed approach with the conventional MDN train-
ing method, i.e. minimizing the NLL

∑N
i=1− log q(yi|xi;ϕ). We evaluate the

training methods in terms of test set NLL, for MDNs with K ∈ {4, 8, 16}
components. We train 20 networks for each setting and dataset, and report the
mean of the 5 best runs. The results are found in Table 6. We observe that
our proposed training method consistently outperforms the baseline of pure
NLL training. For the steering angle prediction and age estimation tasks, our
approach achieves substantial improvements. Moreover, in the particularly
challenging head-pose estimation task, our approach outperforms the standard
MDN by a significant margin.

6 Conclusion
Wederived an efficient and convenient objective that can be employed to train a
parameterized distribution q(y|x;ϕ) by minimizing its KL divergence to a con-
ditional EBM p(y|x; θ). We then applied the derived objective to jointly learn
an effective MDN proposal distribution during EBM training, thus addressing
the main practical limitations of energy-based regression. We evaluated our
proposed EBM training method on illustrative 1D regression problems and
real-world regression tasks within computer vision, achieving highly competi-
tive performance without having to tune any task-dependent hyperparameters.
Lastly, we employed the derived objective to improve training of stand-alone
MDNs, consistently obtainingmore accurate predictive distributions compared
to conventional MDN training. Future directions include estimating the EBM
uncertainty via test-time use of the trained MDN proposal, and applying our
MDN training approach to additional tasks.
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Supplementary Material
In this supplementary material, we provide additional details and results. It
consists of Appendix A - Appendix G. After discussing limitations and societal
impacts in Appendix A, we provide implementation details in Appendix B.
Then, we describe all utilized datasets more closely in Appendix C. We then
provide a complete derivation of Result 1 in Appendix D. Additional results
for the 1D regression task is then provided in Appendix E. Lastly, Appendix F
and Appendix G contain example model and training code. Note that figures
in this supplementary material are numbered with the prefix “S”. Numbers
without this prefix refer to the main paper.

A Limitations & Societal Impacts
Our approach is primarily intended for regression tasks, where the target space
has a limited number of dimensions. For each training sample, several target
values are sampled from the proposal distribution. Our approach is therefore
not intended to scale to very high-dimensional generative modeling tasks, such
as image generation.

Training an EBM using our proposed method in Section 3.2 is somewhat
slower than using the NCE baseline method, since we also have to update an
MDN proposal at each iteration. The NCE baseline however requires hyperpa-
rameters to be tuned specifically for each task at hand. The total environmental
impact due to training is therefore likely smaller for our proposed method. Our
proposed approach for training MDNs in Section 3.3 does however not offer
similar benefits compared to conventional MDN training, and is twice as slow
to train. This issue would be mitigated to a certain extent by sharing parts of
the network among the EBM and MDN, which could be explored in future
work.

B Implementation Details
We train all networks for 75 epochs with a batch size of 32. The number of
samplesM is always set toM = 1024. All networks are trained on individual
NVIDIA TITAN Xp GPUs. Training 20 networks for a specific setting and
dataset on one such GPU takes at most 24− 48 hours. Producing the results in
Table 1 to Table 6 thus required approximately 50 GPU days of training. We
utilized an internal GPU cluster.
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Figure S1: Training data {(xi, yi)}2000i=1

for the first 1D regression dataset [20].
Figure S2: Training data {(xi, yi)}1700i=1

for the second 1D regression dataset [58].

PyTorch code defining the network architecture used for the head-pose estima-
tion task in Section 5.1 is found in Appendix F below. PyTorch code for the
corresponding main training loop is found in Appendix G.

In Section 5.1, the EBM p(y|x; θ) = efθ(x,y)/
∫
efθ(x,ỹ)dỹ is evaluated by ap-

proximately computing its test set negative log-likelihood (NLL). We do so by
evaluating fθ(x, y) at densely sampled y values in an interval [ymin, ymax]. For
the second 1D regression dataset, we evaluate at 8 192 values in [−12.5, 12.5].
For steering angle prediction, 20 000 values in [−100, 100]. For cell-count pre-
diction, 19 900 values in [1, 200]. For age estimation, 5 900 values in [1, 60].
For head-pose estimation, 27 000 values in {x ∈ R3 : xi ∈ [−80, 80], i =
1, 2, 3}.

C Dataset Details
The training data for the two 1D regression problems is visualized in Figure S1
and Figure S2.

For steering angle prediction, cell-count prediction and age estimation, our
utilized datasets from [60, 61] are all available at https://github.com/
UBCDingXin/improved_CcGAN.

The original age estimation dataset UTKFace [62] is available at https:
//susanqq.github.io/UTKFace/, for non-commercial research pur-
poses only. The dataset consists of images collected from the internet, i.e. im-
ages collected without explicitly obtained consent to be used specifically for
training age estimation models. Thus, we choose to not display any dataset
examples.

For head-pose estimation, the BIWI [63] dataset is available for research pur-
poses only. The dataset was created by recording 20 people (research subjects)
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while they freely turned their heads around. The processed version provided by
[64] that we utilize is available at https://github.com/shamangary/
FSA-Net. Since the dataset images could potentially contain personally iden-
tifiable information, we choose to not display any dataset examples.

D Derivation of Result 1
To derive Result 1 in Section 3.1 of the main paper, we first rewrite the KL
divergence ∇ϕDKL

(
p(y|x; θ) ∥ q(y|x;ϕ)

)
according to,

∇ϕDKL
(
p(y|x; θ) ∥ q(y|x;ϕ)

)
= ∇ϕ

∫
p(y|x; θ) log p(y|x; θ)

q(y|x;ϕ)
dy

=

∫
p(y|x; θ)∇ϕ log

p(y|x; θ)
q(y|x;ϕ)

dy

=

∫
p(y|x; θ)∇ϕ

(
log p(y|x; θ)− log q(y|x;ϕ)

)
dy

= −
∫

p(y|x; θ)∇ϕ log q(y|x;ϕ)dy

= −
∫

p(y|x; θ) 1

q(y|x;ϕ)
∇ϕq(y|x;ϕ)dy

= −
∫

efθ(x,y)∫
efθ(x,ỹ)dỹ

1

q(y|x;ϕ)
∇ϕq(y|x;ϕ)dy

= − 1∫
efθ(x,ỹ)dỹ

∫
efθ(x,y)

1

q(y|x;ϕ)
∇ϕq(y|x;ϕ)dy.

Then, we approximate the two integrals using Monte Carlo importance sam-
pling,

− 1∫
efθ(x,ỹ)dỹ

∫
efθ(x,y)

1

q(y|x;ϕ)
∇ϕq(y|x;ϕ)dy

= − 1∫
efθ(x,y)dy

∫
efθ(x,y)

q(y|x;ϕ)2
(
∇ϕq(y|x;ϕ)

)
q(y|x;ϕ)dy

= − 1∫
efθ(x,y)

q(y|x;ϕ)q(y|x;ϕ)dy

∫
efθ(x,y)

q(y|x;ϕ)2
(
∇ϕq(y|x;ϕ)

)
q(y|x;ϕ)dy

≈ − 1

1
M

∑M
m=1

efθ(x,y(m))

q(y(m)|x;ϕ)

(
1

M

M∑
m=1

efθ(x,y
(m))

q(y(m)|x;ϕ)2
∇ϕq(y

(m)|x;ϕ)
)
,
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where {y(m)}Mm=1 are M independent samples drawn from q(y|x;ϕ). Finally,
we further rewrite the resulting expression according to,

− 1

1
M

∑M
m=1

efθ(x,y(m))

q(y(m)|x;ϕ)

(
1

M

M∑
m=1

efθ(x,y
(m))

q(y(m)|x;ϕ)2
∇ϕq(y

(m)|x;ϕ)
)

=
1

1
M

∑M
m=1

efθ(x,y(m))

q(y(m)|x;ϕ)

(
1

M

M∑
m=1

efθ(x,y
(m))∇ϕ

1

q(y(m)|x;ϕ)

)

=
1

1
M

∑M
m=1

efθ(x,y(m))

q(y(m)|x;ϕ)

(
1

M

M∑
m=1

∇ϕ
efθ(x,y

(m))

q(y(m)|x;ϕ)

)

=
1

1
M

∑M
m=1

efθ(x,y(m))

q(y(m)|x;ϕ)

∇ϕ

(
1

M

M∑
m=1

efθ(x,y
(m))

q(y(m)|x;ϕ)

)

=

(
1

M

M∑
m=1

efθ(x,y
(m))

q(y(m)|x;ϕ)

)−1

∇ϕ

(
1

M

M∑
m=1

efθ(x,y
(m))

q(y(m)|x;ϕ)

)

= ∇ϕ log
(

1

M

M∑
m=1

efθ(x,y
(m))

q(y(m)|x;ϕ)

)
.

D.1 Best Possible Proposal

We here expand on the footnote on page 5 of the main paper. When training
the EBM p(y|x; θ) = efθ(x,y)/Z(x, θ) by minimizing the approximated NLL
in (2), we wish to use the proposal q(y|x;ϕ) that yields the best possible NLL
approximation. In general, this is achieved when the proposal equals the EBM,
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i.e. when q(y|x;ϕ) = p(y|x; θ). To see why this is true, we set q = p in (2),

J(θ) =
1

N

N∑
i=1

log
(

1

M

M∑
m=1

efθ(xi,y
(m)
i )

q(y
(m)
i )

)
− fθ(xi, yi)

=
1

N

N∑
i=1

log
(

1

M

M∑
m=1

efθ(xi,y
(m)
i )

p(y
(m)
i |xi; θ)

)
− fθ(xi, yi)

=
1

N

N∑
i=1

log
(

1

M

M∑
m=1

efθ(xi,y
(m)
i )

efθ(xi,y
(m)
i )/Z(xi, θ)

)
− fθ(xi, yi)

=
1

N

N∑
i=1

log
(

1

M

M∑
m=1

Z(xi, θ)

)
− fθ(xi, yi)

=
1

N

N∑
i=1

logZ(xi, θ)− fθ(xi, yi)

=
1

N

N∑
i=1

− log
(
efθ(xi,yi)

Z(xi, θ)

)

=
1

N

N∑
i=1

− log p(yi|xi; θ),

which corresponds to the exact NLL objective.

E Additional Results
Figure 2 in themain paper visualizes the fully trained EBM andMDNproposal,
i.e. after 75 epochs of training. In Figure S3, we instead visualize the EBM and
MDN after 5 (top row), 10, 15, 20 and 25 (bottom row) epochs of training. We
observe that the EBM is closer to the ground truth early on during training,
guiding the MDN via the JKL(ϕ) loss in (5).

In Figure S4, we visualize the fully trained EBM and MDN proposal when
instead using just K = 1 component in the MDN. We observe that the EBM
still is close to the ground truth. Apart from visualizing the EBM using the
technique from [20] (evaluating fθ(x, y) at densely sampled y values in the
interval [−3, 3] for each x), we here also demonstrate that we can draw ap-
proximate samples from the EBM using the method described in Section 3.2.2.
For each x, we draw samples {y(m)}1024m=1 ∼ q(y|x;ϕ) from the proposal, com-
pute weights {w(m)}1024m=1 according to (7), and then re-sample one value from
this set {y(m)}1024m=1 (drawing each y(m) with probability w(m)). We observe
in Figure S4 that this method produces accurate EBM samples, even when the

III-26



Ground Truth EBM MDN Proposal

Figure S3: An illustrative 1D regression problem [20], demonstrating the effective-
ness of our proposed method to jointly train an EBM p(y|x; θ) and MDN proposal
q(y|x;φ). In this example, the MDN has K = 4 components. The EBM is trained
using NCE with q(y|x;φ) acting as the noise distribution, whereas the MDN is trained
by minimizing its KL divergence to p(y|x; θ). The EBM andMDN are here visualized
after 5 (top row), 10, 15, 20 and 25 (bottom row) epochs of training.
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EBM MDN Proposal EBM Samples

Figure S4: An illustrative 1D regression problem [20], demonstrating the effective-
ness of our proposed method to jointly train an EBM p(y|x; θ) and MDN proposal
q(y|x;φ). In this example, theMDN hasK = 1 component. We here also demonstrate
that we can draw approximate samples from the EBM using the method described in
Section 3.2.2.

proposal is unimodal and thus not a particularly close approximation of the
EBM.

F PyTorch Code - Network Architecture
class NoiseNet(nn.Module):

def __init__(self, hidden_dim):
super().__init__()

self.K = 4

self.fc1_mean = nn.Linear(hidden_dim, hidden_dim)
self.fc2_mean = nn.Linear(hidden_dim, 3*self.K)

self.fc1_sigma = nn.Linear(hidden_dim, hidden_dim)
self.fc2_sigma = nn.Linear(hidden_dim, 3*self.K)

self.fc1_weight = nn.Linear(hidden_dim, hidden_dim)
self.fc2_weight = nn.Linear(hidden_dim, self.K)

def forward(self, x_feature):
means = F.relu(self.fc1_mean(x_feature))
means = self.fc2_mean(means)

log_sigma2s = F.relu(self.fc1_sigma(x_feature))
log_sigma2s = self.fc2_sigma(log_sigma2s)

weight_logits = F.relu(self.fc1_weight(x_feature))
weight_logits = self.fc2_weight(weight_logits)
weights = torch.softmax(weight_logits, dim=1)

return means, log_sigma2s, weights

class PredictorNet(nn.Module):
def __init__(self, input_dim, hidden_dim):

super().__init__()

self.fc1_y = nn.Linear(input_dim, 16)
self.fc2_y = nn.Linear(16, 32)
self.fc3_y = nn.Linear(32, 64)
self.fc4_y = nn.Linear(64, 128)

self.fc1_xy = nn.Linear(hidden_dim+128, hidden_dim)
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self.fc2_xy = nn.Linear(hidden_dim, 1)

def forward(self, x_feature, y):
batch_size, num_samples, _ = y.shape

x_feature = x_feature.view(batch_size, 1, -1).expand(-1, num_samples, -1)
x_feature = x_feature.reshape(batch_size*num_samples, -1)

y = y.reshape(batch_size*num_samples, -1)

y_feature = F.relu(self.fc1_y(y))
y_feature = F.relu(self.fc2_y(y_feature))
y_feature = F.relu(self.fc3_y(y_feature))
y_feature = F.relu(self.fc4_y(y_feature))

xy_feature = torch.cat([x_feature, y_feature], 1)

xy_feature = F.relu(self.fc1_xy(xy_feature))
score = self.fc2_xy(xy_feature)

score = score.view(batch_size, num_samples)

return score

class FeatureNet(nn.Module):
def __init__(self):

super().__init__()

resnet18 = models.resnet18(pretrained=True)
self.resnet18 = nn.Sequential(*list(resnet18.children())[:-2])

self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))

def forward(self, x):
x_feature = self.resnet18(x)
x_feature = self.avg_pool(x_feature)
x_feature = x_feature.squeeze(2).squeeze(2)

return x_feature

class Net(nn.Module):
def __init__(self):

super(Net, self).__init__()

hidden_dim = 512

self.feature_net = FeatureNet()
self.noise_net = NoiseNet(hidden_dim)
self.predictor_net = PredictorNet(3, hidden_dim)

def forward(self, x, y):
x_feature = self.feature_net(x)
return self.noise_net(x_feature)

G PyTorch Code - Training Loop
for step, (xs, ys) in enumerate(train_loader):

xs = xs.cuda() # (shape: (batch_size, 3, img_size, img_size))
ys = ys.cuda() # (shape: (batch_size, 3))

x_features = network.feature_net(xs) # (shape: (batch_size, hidden_dim))

means, log_sigma2s, weights = network.noise_net(x_features.detach())
# (means has shape: (batch_size, 3K))
# (log_sigma2s has shape: (batch_size, 3K))
# (weights has shape: (batch_size, K))
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sigmas = torch.exp(log_sigma2s/2.0) # (shape: (batch_size, 3K))
means = means.view(-1, 3, K) # (shape: (batch_size, 3, K))
sigmas = sigmas.view(-1, 3, K) # (shape: (batch_size, 3, K))

q_distr = torch.distributions.normal.Normal(loc=means, scale=sigmas)
q_ys_K = torch.exp(q_distr.log_prob(ys.unsqueeze(2)).sum(1)) # (shape: (batch_size, K)
q_ys = torch.sum(weights*q_ys_K, dim=1) # (shape: (batch_size))

y_samples_K = q_distr.sample(sample_shape=torch.Size([num_samples]))
# (shape: (num_samples, batch_size, 3, K))
inds = torch.multinomial(weights, num_samples=num_samples,

replacement=True).unsqueeze(2).unsqueeze(2)
# (shape: (batch_size, num_samples, 1, 1))
inds = inds.expand(-1, -1, 3, 1) # (shape: (batch_size, num_samples, 3, 1))
inds = torch.transpose(inds, 1, 0) # (shape: (num_samples, batch_size, 3, 1))
y_samples = y_samples_K.gather(3, inds).squeeze(3) # (shape: (num_samples, batch_size, 3))
y_samples = y_samples.detach()
q_y_samples_K = torch.exp(q_distr.log_prob(y_samples.unsqueeze(3)).sum(2))
# (shape: (num_samples, batch_size, K))
q_y_samples = torch.sum(weights.unsqueeze(0)*q_y_samples_K, dim=2)
# (shape: (num_samples, batch_size))
y_samples = torch.transpose(y_samples, 1, 0) # (shape: (batch_size, num_samples, 3))
q_y_samples = torch.transpose(q_y_samples, 1, 0) # (shape: (batch_size, num_samples))

scores_gt = network.predictor_net(x_features, ys.unsqueeze(1)) # (shape: (batch_size, 1))
scores_gt = scores_gt.squeeze(1) # (shape: (batch_size))

scores_samples = network.predictor_net(x_features, y_samples)
# (shape: (batch_size, num_samples))

##############################################################
# compute loss:
##############################################################
f_samples = scores_samples
p_N_samples = q_y_samples.detach()
f_0 = scores_gt
p_N_0 = q_ys.detach()
exp_vals_0 = f_0-torch.log(p_N_0)
exp_vals_samples = f_samples-torch.log(p_N_samples)
exp_vals = torch.cat([exp_vals_0.unsqueeze(1), exp_vals_samples], dim=1)
loss_ebm_nce = -torch.mean(exp_vals_0 - torch.logsumexp(exp_vals, dim=1))

log_Z = torch.logsumexp(scores_samples.detach()
- torch.log(q_y_samples), dim=1) - math.log(num_samples)

loss_mdn_kl = torch.mean(log_Z)

loss = loss_ebm_nce + loss_mdn_kl

optimizer.zero_grad()
loss.backward()
optimizer.step()
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Accurate 3DObject Detection using
Energy-Based Models

Abstract
Accurate 3D object detection (3DOD) is crucial for safe navigation of complex
environments by autonomous robots. Regressing accurate 3D bounding boxes
in cluttered environments based on sparse LiDAR data is however a highly
challenging problem. We address this task by exploring recent advances in
conditional energy-based models (EBMs) for probabilistic regression. While
methods employing EBMs for regression have demonstrated impressive per-
formance on 2D object detection in images, these techniques are not directly
applicable to 3D bounding boxes. In this work, we therefore design a differ-
entiable pooling operator for 3D bounding boxes, serving as the core module
of our EBM network. We further integrate this general approach into the state-
of-the-art 3D object detector SA-SSD. On the KITTI dataset, our proposed
approach consistently outperforms the SA-SSD baseline across all 3DODmet-
rics, demonstrating the potential of EBM-based regression for highly accurate
3DOD. Code is available at https://github.com/fregu856/ebms_
3dod.

1 Introduction
3D object detection (3DOD) is a key perception task for self-driving vehicles
and other autonomous robots. 3DOD entails detecting various objects from
sensor data, and estimating their size and position in the 3D world. Specifi-
cally, the goal of 3DOD is to place oriented 3D bounding boxes which tightly
contain all surrounding objects of interest. See Figure 1 for an example. These
3D bounding boxes then serve as input to important high-level tasks such as
planning and collision avoidance. Accurate 3DOD is thus crucial for safe au-
tonomous navigation of different complex environments.

In the automotive domain, 3DOD is usually performed from LiDAR point
clouds [1, 2, 3], images captured by vehicle-mounted cameras [4, 5, 6], or
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Figure 1: We study how energy-based models (EBMs) can be applied to accurately
regress 3D bounding boxes in 3DOD from LiDAR point clouds. Here, we visualize
the output of our detector on a validation example from the KITTI [18] dataset.

from a combination of both data modalities [7, 8, 9]. Radar sensors are some-
times also utilized [10, 11, 12]. State-of-the-art 3D object detectors employ
deep neural networks (DNNs) to learn powerful feature representations directly
from this data [3, 13, 14]. The 3DOD task is then commonly divided into two
sub-tasks, in which anchor or proposal 3D bounding boxes are classified as ei-
ther background or a specific class of object, and then regressed toward ground
truth boxes [15, 16, 17].

In general, regression entails predicting a continuous target y from an input x.
This is a fundamental machine learning problem that can be addressed using a
variety of different techniques [20, 21, 22, 23, 24]. Specifically in 3DOD, the
3D bounding box regression problem is usually addressed by letting a DNN
directly predict a target bounding box y for a given input x, and training the
DNN by minimizing the L2 or Huber loss [25, 15, 1, 3, 19]. Alternatively,
a probabilistic regression approach has also been employed. The conditional
target density p(y|x), i.e. the distribution for the target 3D bounding box y
given the input x, is then explicitly modelled using a DNN, which is trained by
minimizing the associated negative log-likelihood. Previous work on 3DOD
has mainly explored Gaussian models of p(y|x) [26, 27, 28, 29].

AGaussianmodel is however fairly restrictive, limiting p(y|x) to unimodal and
symmetric distributions. Instead, recent work [30, 31, 32] has demonstrated
that improved regression accuracy can be obtained on various tasks by em-
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SA-SSD Pool f(x,y)

y
x

Figure 2: An overview of our proposed approach, applying EBM-based regression
to the task of 3D object detection. We integrate a conditional EBM p(y|x; θ) =
efθ(x,y)/

∫
efθ(x,ỹ)dỹ into the state-of-the-art 3D object detector SA-SSD [19]. We

achieve this by designing a differentiable pooling operator that, given a 3D bounding
box y, extracts a feature vector from the SA-SSD output. This feature vector is then
processed by three fully-connected layers, outputting the scalar energy fθ(x, y) ∈ R.

ploying energy-based models (EBMs) [33] to represent the conditional target
density p(y|x). Specifically, this approach entails modeling p(y|x) with the
conditional EBM p(y|x; θ) = efθ(x,y)/

∫
efθ(x,ỹ)dỹ, and then using gradient

ascent to maximize p(y|x; θ)w.r.t. y at test-time. Since the EBM p(y|x; θ) is di-
rectly specified via the scalar function fθ(x, y), which is defined using a DNN,
it is a highly expressive model that puts minimal restricting assumptions on
p(y|x). Even potential multi-modality in the distribution p(y|x) can therefore
be learned directly from data. This EBM-based regression approach is thus an
attractive alternative also for 3D bounding box regression, especially consid-
ering the impressive performance demonstrated on conventional 2D bounding
box regression in images [30, 31, 32].

Extending the approach from 2D to 3D is however challenging. In particular,
using gradient ascent to maximize the EBM p(y|x; θ) at test-time requires the
scalar DNN output fθ(x, y) to be differentiable w.r.t. the bounding box y. For
2D bounding boxes in images, this was achieved by applying a differentiable
pooling operator [34] on image features [30, 31, 32], but this technique is not
directly applicable to 3D bounding boxes. How EBM-based regression should
be applied to 3DOD is thus currently an open question, which we set out to
investigate in this work.

Contributions We apply conditional EBMs p(y|x; θ) to the task of 3D bound-
ing box regression, extending the recent EBM-based regression approach [30,
31, 32] from 2D to 3D object detection. This is achieved by adding an extra net-
work branch to the state-of-the-art 3D object detector SA-SSD [19], and design-
ing a differentiable pooling operator for 3D bounding boxes y. We evaluate
our proposed detector on the KITTI [18] dataset and consistently outperform
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the SA-SSD baseline detector across all 3DODmetrics. Our work thus demon-
strates the potential of EBM-based regression for highly accurate 3DOD.

2 Energy-Based Models for Regression
EBMswere extensively studied by the machine learning community in the past
[33, 35, 36, 37, 38, 39]. In recent years they have also had a resurgence within
the field of computer vision, frequently being employed for generative image
modeling [40, 41, 42, 43, 44, 45, 46, 47]. In comparison, the application of
EBMs to regression problems has not been a particularly well-studied topic.
Very recent work [30, 31, 32] has however demonstrated their efficacy on di-
verse computer vision regression tasks such as visual object tracking, head-
pose estimation and age estimation.

In regression, the task is to learn to predict targets y⋆ ∈ Y from inputs x⋆ ∈ X ,
given a training set D of i.i.d. input-target pairs, D = {(xi, yi)}Ni=1, (xi, yi) ∼
p(x, y). The input spaceX depends on the specific problem, but can e.g. corre-
spond to the space of images or point clouds. The target space Y is continuous,
Y = RK for someK ≥ 1.

In EBM-based regression [30, 31, 32], this task is addressed by modelling the
distribution p(y|x) of y given x with a conditional EBM p(y|x; θ), defined
according to,

p(y|x; θ) = efθ(x,y)

Z(x, θ)
, Z(x, θ) =

∫
efθ(x,ỹ)dỹ. (1)

Here, fθ : X × Y → R is a DNN that maps any input-target pair (x, y) ∈
X × Y directly to a scalar fθ(x, y) ∈ R, and Z(x, θ) is the input-dependent
normalizing partition function. The DNN output fθ(x, y) is interpreted as the
(negative) energy of the distribution p(y|x; θ).

2.1 Prediction

At test-time, EBM-based regression entails predicting the most likely tar-
get under the model given an input x⋆, i.e. y⋆ = argmaxy p(y|x⋆; θ) =
argmaxy fθ(x⋆, y). In practice, y⋆ = argmaxy fθ(x⋆, y) is approximated by
refining an initial estimate ŷ via T steps of gradient ascent,

y ← y + λ∇yfθ(x
⋆, y), (2)

thus finding a local maximum of fθ(x⋆, y). Evaluation of the partition function
Z(x⋆, θ) is therefore not required.
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2.2 Training

The DNN fθ(x, y) that specifies the conditional EBM (1) can be trained using
various methods for fitting a density p(y|x; θ) to observed data {(xi, yi)}Ni=1.
Generally, the most straightforward such method is probably to minimize the
negative log-likelihood L(θ) = −

∑N
i=1 log p(yi|xi; θ), which for the EBM

p(y|x; θ) is given by,

L(θ) =
N∑
i=1

log
(∫

efθ(xi,y)dy

)
− fθ(xi, yi). (3)

The integral in (3) is however intractable, preventing exact evaluation of L(θ).
One possible solution to this problem is to approximate the intractable integral
using importance sampling, as employed in [30]. However, numerous alterna-
tive approaches also exist, including noise contrastive estimation (NCE) [48]
and score matching [49]. The problem of how EBMs should be trained specifi-
cally for regression was studied in detail in [32], comparing six methods on the
task of 2D bounding box regression in images. From this comparison, [32] con-
cluded that a simple extension of NCE should be considered the go-to training
method.

NCE entails learning to discriminate between observed data examples and sam-
ples drawn from a noise distribution. NCEwas adopted for EBM-based regres-
sion only recently in [32], but has often been used to train EBMs for classifi-
cation tasks in the past [50, 51, 52, 53]. Recently, it has also become highly
utilized within self-supervised representation learning [54, 55, 56, 57]. Apply-
ing NCE to regression means training the DNN fθ(x, y) by minimizing the
loss,

J(θ) = − 1

N

N∑
i=1

Ji(θ),

Ji(θ)= log
exp

{
fθ(xi, y

(0)
i )−log q(y(0)i |yi)

}
M∑

m=0
exp

{
fθ(xi, y

(m)
i )−log q(y(m)

i |yi)
} , (4)

where y(0)i ≜ yi, and {y(m)
i }Mm=1 are M samples drawn from a noise distribu-

tion q(y|yi) that depends on the true target yi. Effectively, J(θ) in (4) is the
softmax cross-entropy loss for a classification problem with M + 1 classes.
A simple choice for q(y|yi) that was shown effective in [32] is setting q to a
mixture ofK Gaussians centered at yi,

q(y|yi) =
1

K

K∑
k=1

N (y; yi, σ
2
kI), (5)

whereK and the variances {σ2
k}Kk=1 are hyperparameters.
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A simple extension to NCE, termed NCE+, was proposed and demonstrated to
further improve the regression accuracy on certain tasks in [32]. TheDNN fθ is
still trained by minimizing J(θ) in (4), but y(0)i is now defined as y(0)i ≜ yi+νi.
The true target yi is thus perturbed with νi ∼ qβ(y), where qβ is a zero-centered
and scaled version of q(y|yi) in (5), i.e. qβ(y) = 1

K

∑K
k=1N (y; 0, βσ2

kI).
NCE+ accounts for possible inaccuracies in the annotation process producing
yi, and can be understood as a direct generalization of NCE. In fact, NCE is
recovered as a special case when β → 0 in qβ(y).

3 Method
We apply EBM-based regression to 3DOD by extending the state-of-the-art 3D
object detector SA-SSD [19] with a conditional EBM p(y|x; θ) (1). In Sec. 3.1,
we first provide necessary background on SA-SSD, including a description
of its input and output data format. We then detail how the EBM p(y|x; θ)
is defined, employing differentiable pooling of 3D bounding boxes y and an
added network branch, in Sec. 3.2. Our approach for training p(y|x; θ) is based
on NCE and further described in Sec. 3.3. Lastly, our prediction strategy using
gradient ascent is detailed in Sec. 3.4.

3.1 The SA-SSD 3D Object Detector

SA-SSD [19] takes a LiDAR point cloud of the scene as input x and produces
a set {di}Di=1 of D detections. Each detection d consists of a predicted 3D
bounding box y,

y = [ cx cy cz h w l ϕ ]T ∈ R7, (6)

and an associated classification confidence score s ∈ (0, 1). In (6), (cx, cy, cz)
is the 3D coordinate of the bounding box center, (h,w, l) is the 3D bounding
box size, and ϕ is the heading angle of the bounding box.

The input LiDAR point cloud x = {(p(i)x , p
(i)
y , p

(i)
z )}ni=1 of n points is encoded

into a sparse 3D tensor by means of voxelization. This tensor is then processed
by a backbone network utilizing submanifold sparse 3D convolutional layers
[58, 59], producing a 3D feature tensor h1(x) of shape W × L × H × C. A
bird’s eye view (BEV) feature representation of the scene is then created by
flattening h1(x) into the 2D feature map h2(x) of shapeW ×L×HC. Then,
h2(x) is further processed by six standard 2D convolutional layers, outputting
the feature map h3(x) of shape W × L × C ′. Finally, h3(x) is fed to a detec-
tion network, in which two 1 × 1 convolutions are applied. The first outputs
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classification confidence scores and the second outputs offsets for a W × L
grid of anchor 3D bounding boxes.

The SA-SSD backbone and detection networks are trained by minimizing a
weighted sum of multiple losses. The focal loss [60] is employed for the clas-
sification sub-task, and the Huber loss [25] is used for the regression of an-
chor bounding box offsets. Additionally, SA-SSD employs two losses stem-
ming from auxiliary tasks. By inverting the voxelization via interpolation, 3D
feature tensors in the backbone network are represented as point-wise feature
vectors. These are then utilized for point-wise foreground segmentation, i.e.
predicting whether or not a point lies within any ground truth 3D bounding
box, and point-wise center offset regression, i.e. predicting the offset from a
foreground point to the center of its 3D bounding box.

3.2 Conditional EBM Definition

In this work, we extend the SA-SSD 3D object detector with a conditional
EBM p(y|x; θ) = efθ(x,y)/

∫
efθ(x,ỹ)dỹ, which is fully specified by the DNN

fθ. To enable the use of gradient ascent at test time (Sec. 2.1), the DNN must
be designed such that its scalar output fθ(x, y) is differentiable w.r.t. the 3D
bounding box y (6). To achieve this, we take inspiration from the recent work
[30, 31, 32] applying EBM-based regression to 2D bounding box regression in
images. Thus, we design a differentiable pooling operator that, for a given 3D
bounding box y, extracts a feature vector from the SA-SSD backbone network
output. This feature vector is then processed by an added network branch of
fully-connected layers, outputting the energy value fθ(x, y) ∈ R.

Differentiable Pooling of 3D Bounding Boxes Various pooling operators for
3D bounding boxes y (6) have been utilized for refining proposal bounding
boxes in previous work [17, 2, 1, 3], none of which are however differen-
tiable w.r.t. the bounding box y. [17] extracts all points in the point cloud
x = {(p(i)x , p

(i)
y , p

(i)
z )}ni=1 which lie within a given box y, and then processes

the associated point-wise features to extract a feature vector for y. This opera-
tor is however not differentiable w.r.t. y, due to the required discrete assessment
of whether a point (p(i)x , p

(i)
y , p

(i)
z ) lies within the 3D bounding box y or not. [2]

instead divides the box y into a 3D grid and extracts all points which lie within
each grid cell. By also encoding which grid cells are empty, this pooling oper-
ator better captures geometric information. Because of the discrete extraction
of points for each grid cell, it is however still not differentiable w.r.t. the 3D
bounding box y. For similar reasons, the pooling operators utilized in [1, 3],
which capture even richer contextual information, are not differentiable w.r.t.
y either.
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Figure 3: Illustration of our modified variant of RoIAlign [61] for oriented 2D bound-
ing boxes. In this example, the regularW ′ ×L′ grid is 2× 3. Bilinear interpolation is
used to extract a feature vector for each of theW ′L′ grid points.

Instead, we utilize the 2D feature map h3(x) of shape W × L × C ′ that is
produced by the SA-SSD backbone network. This is a compact yet powerful
BEV feature representation of the scene. Specifically, we extract a feature
vector h4(x, yBEV) by pooling h3(x) with yBEV,

yBEV = [ cx cy w l φ ]T ∈ R5, (7)

which is the BEV version of the 3D bounding box y (6). Since yBEV is an
oriented 2D bounding box and not necessarily axis-aligned, we can not directly
apply standard 2D bounding box pooling operators [62, 61, 34]. Instead we
employ a modified variant of RoIAlign [61], which entails dividing yBEV into
a regular W ′ × L′ grid, and extracting a feature vector g ∈ RC′ in each grid
point via bilinear interpolation of h3(x). See Figure 3 for an illustration. This
operation results in a 2D feature map of shape W ′ × L′ × C ′, which we then
flatten to obtain the feature vector h4(x, yBEV) ∈ RW ′L′C′ . By flattening the
feature map instead of e.g. averaging over it, more information is preserved in
h4(x, y

BEV). It can thus be used to discriminate between a given box and the
same box rotated π rad.

This pooling operation is differentiable w.r.t. yBEV, but the extracted feature
vector h4(x, yBEV) ∈ RW ′L′C′ is of course only a function of yBEV (7), not
of the full 3D bounding box y (6). Using gradient ascent at test-time would
thus not update the z coordinate cz or height h of the bounding box y. To
resolve this, we take inspiration from the architecture used for EBM-based
age estimation [30]. We thus process cz ∈ R and h ∈ R by two small fully-
connected layers, generating feature vectors gcz ∈ RC′′ and gh ∈ RC′′ . Finally,
we concatenate the three vectors to obtain h5(x, y),

h5(x, y) = h4(x, y
BEV)⊕ gcz ⊕ gh ∈ RW ′L′C′+2C′′

, (8)
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Figure 4: Detailed illustration of the proposed differentiable pooling operation from
3D bounding box y (6) to feature vector h5(x, y) (8). The BEV version of y is pooled
with the BEV feature map produced by SA-SSD. The z coordinate cz and height h of
the box y are processed by two fully-connected layers.

where⊕ indicates vector concatenation. The complete pooling operation from
3D bounding box y to feature vector h5(x, y) is illustrated in Figure 4.

Energy Prediction Branch Following [30, 31, 32], we add an extra network
branch onto SA-SSD for processing the extracted feature vector. The network
branch consists of three fully-connected layers. It takes the feature vector
h5(x, y) ∈ RW ′L′C′+2C′′ as input and outputs the scalar energy fθ(x, y) ∈ R,
thus fully specifying the conditional EBM p(y|x; θ) (1). The complete archi-
tecture of p(y|x; θ) is illustrated in Figure 2.

3.3 Detector Training

Following the work on EBM-based 2D object detection [30, 32], the extra
fully-connected layers described in Sec 3.2 are added onto a pre-trained and
fixed SA-SSD detector. The parameters θ in fθ(x, y) thus only stem from
these added fully-connected layers, and the SA-SSD backbone and detection
networks are kept fixed during training of the DNN fθ. To train fθ, we use
NCE as described in Sec 2.2. We employ the same training parameters (batch
size, data augmentation etc.) as for SA-SSD [19], only replacing the original
detector loss with the NCE loss (4).

3.4 Detector Inference

At test-time, the input LiDAR point cloud x� is first processed by the SA-SSD
detector. SA-SSD outputs the 2D feature map h3(x

�) and a set {(ŷi, si)}Di=1
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Algorithm 1 Gradient-based refinement.
Input: x⋆, {ŷi}Di=1, T , λ, η.
1: for i = 1, . . . , D do
2: y ← ŷi.
3: for t = 1, . . . , T do
4: PrevValue← fθ(x

⋆, y).
5: ỹ ← y + λ∇yfθ(x

⋆, y).
6: NewValue← fθ(x

⋆, ỹ).
7: if NewValue > PrevValue then
8: y ← ỹ.
9: else
10: λ← ηλ.
11: yi ← y.
12: Return {yi}Di=1.

of D detections, where ŷi is a 3D bounding box (6) and si is the associated
classification confidence score. We then take all bounding boxes {ŷi}Di=1 as
initial estimates and refine these via T steps of gradient ascent (Sec 2.1), pro-
ducing {yi}Di=1. The initial 3D bounding boxes {ŷi}Di=1 are thus refined by
being moved toward different local maxima of fθ(x⋆, y). The refined boxes
{yi}Di=1 are finally combined with the original confidence scores, returning the
detections {(yi, si)}Di=1.

This gradient-based refinement of the detections produced by SA-SSD of
course lowers the detector inference speed somewhat. The point cloud x⋆

is however still processed by SA-SSD only once, and the scalar fθ(x⋆, y) is
extracted from h3(x

⋆) using an efficient pooling operator and just a few fully-
connected layers. Moreover, the gradient ∇yfθ(x

⋆, y) can be efficiently eval-
uated using automatic differentiation. The complete refinement procedure is
detailed in Algorithm 1, where λ denotes the gradient ascent step-length, η is
a decay of the step-length, and the NewValue > PrevValue check ensures
that fθ(x⋆, y) is never decreased.

4 Experiments
We evaluate our EBM-based 3DOD approach on the KITTI 3DOD dataset
[18] and compare it with the SA-SSD [19] baseline and other state-of-the-art
methods. Our detector is implemented in PyTorch [63]. Training and inference
code is publicly available.
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4.1 Dataset

KITTI [18] is the most commonly used dataset for automotive 3DOD. It con-
tains 7 481 examples for training, and 7 518 test examples without publicly
available ground truth annotations. Following common practice [19, 3], the
training examples are further divided into train (3 712 examples) and val (3 769
examples) splits. We train models exclusively on the train split and set hyper-
parameters using the val split. We report results both on val, and on the test
split by submitting detections to the KITTI benchmark server. Following SA-
SSD, we conduct experiments only on the car object class.

Evaluation Metrics On the KITTI benchmark server, models are evaluated
in terms of average precision (AP) in both 3D and BEV. It considers three
different difficulty levels (easy, moderate and hard), based on how far away and
occluded objects are. AP is the area under the precision-recall curve, where a
predicted bounding box is considered a true positive if its 3D/BEV IoU with
a ground truth box exceeds a certain threshold. For cars, the threshold is set
to 0.7 on the KITTI benchmark. Two predicted boxes with IoU of, e.g., 0.71
and 0.99 thus have identical effect on this metric. Since our main goal is to
improve the accuracy of all predicted bounding boxes, we also report the AP
for higher thresholds {0.75, 0.8, 0.85, 0.9} on the val split. All reported AP
values are computed using 40 recall positions.

4.2 Implementation Details

We utilize the open-source implementation and pre-trainedmodel provided1 by
the SA-SSD authors. The feature map h3(x) that is produced by the backbone
network is of shape 200× 176× 256. We divide each yBEV (7) into a regular
4 × 7 grid, meaning that the feature vector h4(x, yBEV) ∈ R7168. We process
cz ∈ R and h ∈ R with separate fully-connected layers (dimensions: 1→ 16,
16 → 16), generating gcz ∈ R16 and gh ∈ R16. After concatenation, we
thus obtain h5(x, y) ∈ R7200. Finally, h5(x, y) is processed by three fully-
connected layers of dimensions 7200 → 1024, 1024 → 1024, 1024 → 1. To
train the DNN fθ(x, y), i.e. the added fully-connected layers, we just replace
the original detector loss with the NCE loss (Sec. 3.3). We also considered
NCE+ with β > 0, but saw no clear improvements over NCE. We hypothesize
this is because there is less inherent ambiguity in the annotation process of
3D bounding boxes than of 2D bounding boxes in images. As in [32], we set
K = 3 with σ1 = σ3/4, σ2 = σ3/2 for the noise distribution q(y|yi) (5).
After ablation, optimizing 3D AP (moderate difficulty) on the val split, we
set σ3 differently for different components of the 3D box y (6). Specifically,
σ3 = 0.25 for (cx, cy), σ3 = 0.125 for (cz, h, w, l) and σ3 = 0.0625 for

1https://github.com/skyhehe123/SA-SSD
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Table 1: Results on KITTI test in terms of 3D and BEV AP. Our SA-SSD+EBM de-
tector consistently outperforms the SA-SSD baseline, and achieves highly competitive
performance also compared to other state-of-the-art methods.

3D @ 0.7 BEV @ 0.7
Easy Moderate Hard Easy Moderate Hard

Part-A2 [2] 87.81 78.49 73.51 91.70 87.79 84.61
SERCNN [64] 87.74 78.96 74.30 94.11 88.10 83.43
EPNet [65] 89.81 79.28 74.59 94.22 88.47 83.69
Point-GNN [66] 88.33 79.47 72.29 93.11 89.17 83.90
3DSSD [67] 88.36 79.57 74.55 92.66 89.02 85.86
STD [1] 87.95 79.71 75.09 94.74 89.19 86.42
SA-SSD [19] 88.75 79.79 74.16 95.03 91.03 85.96
3D-CVF [14] 89.20 80.05 73.11 93.52 89.56 82.45
CLOCs-PVCas [13] 88.94 80.67 77.15 93.05 89.80 86.57
PV-RCNN [3] 90.25 81.43 76.82 94.98 90.65 86.14

SA-SSD 88.80 79.52 72.30 95.44 89.63 84.34
SA-SSD+EBM 91.05 80.12 72.78 95.64 89.86 84.56
Rel. Improvement +2.53% +0.75% +0.66% +0.21% +0.26% +0.26%

ϕ. Following [30, 32], we also set T = 10 and η = 0.5 for gradient-based
refinement (Algorithm 1). The step-length λ = 0.0002 was selected based on
ablation.

4.3 3DOD Results on KITTI

Results on KITTI test in terms of 3D and BEV AP (0.7 threshold) are found
in Table 1. We mainly compare the performance of our EBM-based 3D object
detector (SA-SSD+EBM) to the pre-trained SA-SSD it extends, and include
other state-of-the-art detectors for reference. We also include the results for SA-
SSD reported in the original paper [19], as these differ somewhat from those
obtained with the provided pre-trained model. In Table 1, we observe that the
added EBM and gradient-based refinement consistently improves the SA-SSD
baseline across all metrics. We also observe that our SA-SSD+EBM detector
achieves very competitive performance compared to previous methods.

Results on KITTI val in terms of 3D and BEV AP (0.7 threshold) are found in
Table 2. There, we only include detectors for which AP values computed using
40 recall positions are available. In Table 2, we again observe that our EBM-
based detector consistently outperforms the SA-SSD baseline. On KITTI val,
our SA-SSD+EBM also sets a new state-of-the-art in terms of all but one of
the metrics.

A further comparison of SA-SSD+EBM and the SA-SSD baseline is provided
in Table 3. There, we report AP for higher thresholds {0.75, 0.8, 0.85, 0.9}
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Table 2: Results on KITTI val in terms of 3D and BEV AP. Our proposed detector
consistently outperforms the SA-SSD baseline, and sets a new state-of-the-art for all
but one of the metrics.

3D @ 0.7 BEV @ 0.7
Easy Moderate Hard Easy Moderate Hard

SA-SSD [19] 93.23 84.30 81.36 - - -
CLOCs-PVCas [13] 92.78 85.94 83.25 93.48 91.98 89.48
PV-RCNN [3] 92.57 84.83 82.69 95.76 91.11 88.93

SA-SSD 93.14 84.65 81.86 96.56 92.84 90.36
SA-SSD+EBM 95.45 86.83 82.23 96.60 92.92 90.43
Rel. Improvement +2.48% +2.58% +0.45% +0.04% +0.09% +0.08%

Table 3: Results on KITTI val in terms of 3D and BEV AP for higher thresholds
{0.75, 0.8, 0.85, 0.9}. Our SA-SSD+EBM detector consistently outperforms the SA-
SSD baseline across all metrics, and the relative improvement increases with the AP
threshold.

3D @ 0.75 3D @ 0.8 3D @ 0.85 3D @ 0.9
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

SA-SSD 84.48 73.91 70.99 60.89 50.08 47.37 24.29 19.58 18.05 2.06 1.58 1.33
SA-SSD+EBM 87.85 74.96 71.95 66.70 54.32 51.36 31.02 23.91 21.95 3.45 2.74 2.26
Rel. Improvement +3.99% +1.42% +1.35% +9.54% +8.47% +8.42% +27.7% +22.1% +21.6% +67.5% +73.4% +69.9%

BEV @ 0.75 BEV @ 0.8 BEV @ 0.85 BEV @ 0.9
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

SA-SSD 95.41 87.47 84.79 87.12 79.07 74.65 61.53 54.15 50.39 17.48 15.71 14.58
SA-SSD+EBM 95.47 87.54 84.88 88.31 80.06 77.25 68.40 58.62 54.48 26.60 22.03 19.48
Rel. Improvement +0.06% +0.08% +0.11% +1.37% +1.25% +3.48% +11.2% +8.25% +8.12% +52.2% +40.2% +33.6%

on KITTI val. We observe that the gradient-based refinement consistently im-
proves detector performance across all metrics, and that the relative gain is
larger for higher thresholds. Our approach thus also refines accurate bounding
boxes even further, an effect not captured by the standard AP metrics.

4.4 Analysis of Inference Speed

The improved detection performance compared to SA-SSD comes with a de-
creased inference speed. On a single NVIDIA TITAN Xp GPU, SA-SSD runs
at 19.2 FPS, while SA-SSD+EBM runs at 8.4 FPS for T = 10 gradient ascent
iterations. We further analyze how the choice of T affects detector inference
speed and performance in Figure 5. The performance is here given in terms of
3DAP (0.7 threshold) averaged over the three difficulty levels (easy, moderate,
hard), on KITTI val. We observe that the choice T = 4 provides approximately
equal performance compared to T = 10, while only decreasing the inference
speed to 12.8 FPS. This trade-off between detector performance and inference
speed could potentially be further improved by using fewer grid points in our
RoIAlign variant, or by using a more lightweight energy prediction network
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Figure 5: Impact of the number of gradient ascent iterations T in Algorithm 1 on
detector performance (3D AP with 0.7 threshold, averaged over easy, moderate and
hard) and detector inference speed (FPS), on KITTI val. Refinement with T = 4
iterations significantly improves the detector performance, while only decreasing the
inference speed from 19.2 to 12.8 FPS.

branch. Our approach could also be very well-suited for offboard 3DOD [68],
where inference speed is less of a concern. Exploring these directions is left
for future work.

4.5 Analysis of Learned Distribution

For 3DOD from LiDAR point clouds, it can be inherently difficult to correctly
predict the heading angle ϕ of a 3D bounding box y (6). This is because it
is often difficult, when only given a point cloud, to distinguish between two
otherwise identical cars which are heading in opposite directions. The true
distribution p(y|x) will thus often have two distinct modes, one at the true
heading angle ϕ and one at ϕ + π. In Figure 6, we visualize fθ(x, y) ∈ R
as a function of ∆ϕ when a predicted 3D bounding box y is rotated ∆ϕ rad,
demonstrating that our trained EBM p(y|x; θ) does indeed capture this inherent
multi-modality in the true p(y|x). Future directions include investigating if
the trained EBM p(y|x; θ) could be used to construct accurate estimates of
prediction uncertainty, or provide other useful insights.

5 Conclusion

We applied conditional EBMs p(y|x; θ) to the task of 3D bounding box regres-
sion, thus extending the recent EBM-based regression approach from 2D to
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Figure 6: Visualization of the DNN scalar output fθ(x, y)when a predicted 3D bound-
ing box y (6) is rotated ∆ϕ rad. The two distinct modes at ∆ϕ = 0 and ∆ϕ = π
demonstrate that the trained EBM p(y|x; θ) captures the inherent multi-modality in
p(y|x).

3D object detection. By designing a differentiable pooling operator for 3D
bounding boxes, we could integrate a conditional EBM p(y|x; θ) into the state-
of-the-art 3D object detector SA-SSD. On the KITTI dataset, our approach
consistently outperformed the SA-SSD baseline across all 3DOD metrics, and
achieved highly competitive performance also compared to other state-of-the-
art methods. By demonstrating the potential of EBM-based regression for
highly accurate 3DOD, we hope that our work will encourage the research
community to further explore the application of EBMs to 3DOD and other
important regression tasks.
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Deep Energy-Based NARX Models

Abstract
This paper is directed towards the problem of learning nonlinear ARX models
based on observed input–output data. In particular, our interest is in learning a
conditional distribution of the current output based on a finite window of past
inputs and outputs. To achieve this, we consider the use of so-called energy-
basedmodels, which have been developed in allied fields for learning unknown
distributions based on data. This energy-based model relies on a general func-
tion to describe the distribution, and here we consider a deep neural network
for this purpose. The primary benefit of this approach is that it is capable of
learning both simple and highly complex noise models, which we demonstrate
on simulated and experimental data.

1 Introduction
This paper considers the problem of learning a model for dynamic systems
based on observed input–output data. This problem has a long and fruitful
history within the system identification, statistics and machine learning com-
munities and there are many different ways to approach it. For example, a
regularly employed approach is to first define a suitable parameterized model
structure based on knowledge of the system. Then we learn, adapt, infer or
estimate the parameters based on the available evidence in the data. To decide
between different parameters, and ultimately provide the best values, the user
is required to choose a performance criterion such as the maximum-likelihood
(ML) or prediction-error criteria.

It is important to note that both the model structure and estimation method in-
volve assumptions about uncertainty, be they explicit or implicit. That is, the
probability distribution that represents this uncertainty is assumed. For exam-
ple, it is not uncommon that users explicitly assume additive white Gaussian
noise as a way of modelling measured output uncertainty. Further, it can be
argued that this same assumption is implicit in mean-squared-error estimation.
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More generally, in many practical situations, it is difficult to simply justify
these assumptions from the available prior system knowledge or even from
the data.

This paper details a means for addressing this difficulty by allowing the dis-
tribution itself to be modelled using a highly flexible function that is learned
from the available data. The primary benefit of this approach is that it can eas-
ily adapt to both highly complex distributions and also less complicated ones
such as a unimodal Gaussian. The inspiration for this approach comes from the
allied field of machine learning where so-called energy-based models (EBMs),
typically combined with deep neural networks (DNNs), are employed for mod-
elling unknown distributions with great success [1, 2, 3].

To make these ideas concrete, this paper will concentrate on the class of
nonlinear-autoregressive-exogenous-input (NARX) dynamic models [4]. In
particular, it will be assumed that the current system output yt is related to
past outputs yt−1, . . . , yt−Dy

, and past inputs ut−1, . . . , ut−Du
; where Dy is

the maximum output delay and Du is the maximum input delay. Our particu-
lar interest here is in providing a conditional distribution of yt given the past
data window. That is, we are concerned with describing

yt|xt ∼ p(yt|xt), (1)

where xt contains the past data window:

xt = {yt−1, . . . , yt−Dy
, ut−1, . . . , ut−Du

}. (2)

Unfortunately, it is not immediately obvious how to choose this distribution
so that it explains measured system data. One way to address this difficulty is
to assume a functional form for this distribution that relies on some unknown
parameters θ, which we denote as pθ(yt|xt). The idea then is to estimate these
parameter values based on the available evidence in the data. This raises at
least two questions; how should we parameterise this distribution, and, how
should we learn from the data?

Regarding the first problem of parameterisation, a traditional approach for
NARX models is to first formulate an output equation form

yt = fθ(xt) + et, (3)

where fθ is a function that is traditionally linear in the parameters θ, but is
otherwise quite a general function of the past data xt. The added term et is a
random variable that characterises the error between the function output fθ(xt)
and the measured output yt, and, its distribution may also depend on θ. There-
fore, by construction, the conditional distribution of interest, pθ(yt|xt), will
depend on the assumed choice of distribution for et.

Regarding the second problem of learning from the data, again a traditional
approach is to formulate and solve the associated ML problem [4]. By way of
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a concrete example, assuming that yt ∈ R and the noise et is i.i.d. Gaussian
with zero mean and variance σ2, then the ML solution for θ coincides with

θ̂ = argmin
θ

T∑
t=1

∥yt − fθ(xt)∥2. (4)

Therefore, an estimate of the desired conditional distribution p(yt|xt) is given
by

yt|xt ∼ N (fθ̂(xt), σ
2). (5)

More complex distributions for et can also be accommodated within the ML
framework, but this requires the user to choose a suitable distributional family.
In many practical situations, it is not obvious how to select this family based
on prior system knowledge.

This paper aims to address this difficulty by providing a highly flexible class
of distributions that is adapted to each new problem based on the available sys-
tem data. In particular, p(yt|xt) will be modelled with the conditional EBM
pθ(yt|xt) = egθ(yt,xt)/

∫
egθ(γ,xt) dγ, where the scalar function gθ is repre-

sented by a DNN with associated parameters θ. This energy-based approach
puts very few restricting assumptions on the true distribution p(yt|xt), enabling
it to be learned directly from data.

Contributions The main contribution of this paper is an energy-based model
capable of learning p(yt|xt) for dynamic systems. We evaluate the new con-
struction on both simulated and experimental data, demonstrating its benefits
compared to more traditional NARX models. This paper thus illustrates the
utility of EBMs and their potential within system identification.

2 Related Work
During the last decade, there has been a surge of interest in DNN models and
these models have been used to obtain state-of-the-art solutions for many ap-
plications, including computer vision, speech recognition and natural language
processing [5]. While the use of neural networks in system identification prob-
lems has a long history [6, 7], the success of the method in neighbouring areas
has brought a new wave of interest within the system identification commu-
nity [8], with recent papers leveraging acquired knowledge and being inspired
by successful ideas from recent DNN applications. Examples of deep-learning-
inspired ideas applied in system identification include; convolutional network
layers [9], encoder-decoder structure [10] and recurrent neural networks and
its extensions [10, 8].
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Figure 1: Structure of the deep EB-NARX model used. Here, xt is the known input
data and yt is a possible output value that we wish to estimate the conditional proba-
bility of. During training, the measured yt will be used to train the predictor net.

EBMs have been extensively studied by the machine learning community [11,
12, 13]. They are usually employed for unsupervised learning applications,
and have in recent years become particularly popular for generative modelling
within computer vision [14, 1, 2]. In comparison, the application of EBMs to
supervised learning problems is not a very well-studied topic, but their effec-
tiveness has been demonstrated for both classification [15] and regression [3].
Most closely related to our proposed approach is the very recent work on em-
ploying conditional EBM’s for regression [3, 16, 17], achieving state-of-the-art
performance on tasks such as object detection and tracking.

3 Energy-Based NARX Models

Inspired by [3], we model the distribution p(yt|xt) with the conditional EBM

pθ(yt|xt) =
egθ(yt,xt)∫
egθ(γ,xt) dγ

, (6)

where gθ is a DNN that maps any pair (yt, xt) directly to a scalar output
gθ(yt, xt) ∈ R.

Here, pθ(yt|xt) is directly specified via the DNN gθ, which provides a highly
flexible class of functions. This enables pθ(yt|xt) to model a wide range of
distributions, including heavy-tailed, asymmetric or multimodal ones. Related
to this, we note that the DNN output value gθ(yt, xt) ∈ R is proportional to
the logarithm of the distribution pθ(yt|xt), not to the output yt itself. This
has implications for how the model may be used, which will be discussed in
Section 3.3 below.

Evaluating the denominator Z(xt) =
∫
gθ(yt|xt) dyt in (6) presents a chal-

lenge since this integral is analytically intractable in general. For the case when
yt is low-dimensional, the integral may be evaluated using standard quadrature
methods. In the more general case, we advocate the use of Monte Carlo meth-
ods for solving this integral (see [3] for details on this approach).
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Since the EBM (6) relies on a nonlinear combination of previous data xt, we
will refer to this as an energy-based NARX (EB-NARX) model. Next, we first
provide more details on the structure of the DNN gθ in Section 3.1. We then
describe how to learn the unknownDNNparameters θ based on a set of training
data D = {yt, xt}Tt=1, in Section 3.2. Finally, we discuss how the model can
be used for prediction, in Section 3.3.

3.1 Neural Network Structure

The DNN gθ is composed of two smaller neural networks; a feature net and
a predictor net parametrised by θ1 and θ2, respectively. The feature net takes
xt as input and produces a feature vector. This feature vector is then com-
bined with yt and fed as input to the predictor net, which finally outputs the
unnormalised log density gθ(yt, xt) ∈ R of (6). See Figure 1 for an illustration.
This structure has the benefit that when making predictions the feature net only
needs to be evaluated once, after which the predictor net can be evaluated for
a range of yt values.

3.2 Training the Neural Network

Presented with the dataD = {yt, xt}Tt=1 and the DNN gθ(yt, xt), it is tempting
to consider the ML problem as a means for learning the parameters θ. Towards
this, we can express the joint likelihood, under the assumption of independence,
as

pθ(y1:T |u1:T ) = pθ(yT |y1:T−1, u1:T ) pθ(y1:T−1|u1:T ), (7)

where we have used conditional probability to arrive at the expression on the
right. Noting the assumed temporal and causal nature of the NARX model,
then repeated application of conditional probability delivers

pθ(y1:T | u1:T ) =
T∏
t=1

pθ(yt | xt) =
T∏
t=1

egθ(yt,xt)∫
egθ(γ,xt) dγ

. (8)

Therefore, the ML estimate for θ coincides with

θ̂ = argmax
θ

pθ(y1:T | u1:T ), (9)

= argmin
θ
− ln pθ(y1:T | u1:T ), (10)

= argmin
θ

T∑
t=1

(
−gθ(yt, xt) + ln

∫
egθ(γ,xt) dγ

)
, (11)
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where the second equality relies on logarithm being a monotonic operator,
which implies that the solutions coincide. The third equality is simply the neg-
ative logarithm applied to (8). This ML problem is not immediately soluble,
due to the analytically intractable integral. Numerical integration can however
be employed to obtain an approximate solution, as shown in [3].

Alternative cost functions for fitting the parameters, θ, of the distribution
pθ(yt|xt) given the observed data {yt, xt}Tt=1 exist. These alternatives were
studied in detail for conditional EBMs by [17], recommending noise con-
trastive estimation (NCE) [18] over ML. We thus employ NCE and learn θ
by minimizing the cost function L(θ)=− 1

T

∑T
t=1 Lt(θ),

Lt(θ) = ln
exp

(
gθ(y

(0)
t , xt)−ln q(y(0)t |yt)

)
∑M

m=0 exp
(
gθ(y

(m)
t , xt)−ln q(y(m)

t |yt)
) , (12)

where y
(0)
t ≜ yt, and {y(m)

t }Mm=1 are M noise samples drawn from q(y|yt).
This noise distribution is a mixture ofK Gaussians centered at yt,

q(y|yt) =
1

K

K∑
k=1

N (y|yt, σ2
kI). (13)

Since (12) can be interpreted as the cross-entropy loss for a classification prob-
lem with M + 1 classes, NCE intuitively entails learning to discriminate be-
tween the output yt and sampled noise {y(m)

t }Mm=1.

3.3 Prediction using the Deep EBM

Rather than giving a point prediction, the proposed deep EB-NARX model
predicts gθ(yt, xt) ∝ ln pθ(yt|xt). There are two ways in which this prediction
could be used: if the uncertainty of the prediction is important then we can
evaluate pθ(yt|xt); alternatively, if we only require a point estimate then we
could choose the maximum a posterior (MAP) estimate.

The MAP estimate, ŷt, can be found by solving

ŷt = argmax
yt

pθ(yt|xt) = argmax
yt

gθ(yt, xt). (14)

Since there is no guarantee that pθ(yt|xt) is unimodal, it was found practical
to evaluate gθ(yt, xt) for a spread of values and then refine the best of these
using gradient ascent, yt ← yt + λ∇yt

gθ(yt, xt).

An estimate of pθ(yt|xt) can be determined by evaluating (6) for a range of
feasible values of yt, where the denominator can be determined by numerical
integration, such as Monte Carlo integration.
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4 Examples
This section provides several examples which illustrate the utility of the EB-
NARX model when applied to data from dynamic systems. These examples
include both simulated linear and non-linear data, as well as real data from the
CE8 coupled electric drives nonlinear data set [19]. For the linear examples,
qualitative comparisons are made between the estimated and true distributions.
For the non-linear examples, qualitative comparisons are made between a fully
connected network (FCN) and EB-NARX estimates of the conditional distri-
butions.

While simple, FCN’s obtain highly competitive results in nonlinear system
identification benchmarks, even when compared with more sophisticated ap-
proaches, such as convolutional and recurrent neural networks, see the bench-
marks in [9]. The FCN models are estimated in the functional form (3),
nonetheless the conversion to a probabilistic form (1) is straightforward: we
use the implicit assumption of Gaussian noise (which is made when minimiz-
ing the least square cost function), where the mean is the output of the model
and the variance is the sample variance.

Quantitative comparison between the EB-NARX model estimates and the true
values are given using the mean squared error (MSE) based on the MAP value
from the predicted conditional distribution. Python code for these examples is
available at: github.com/jnh277/ebm_arx.

4.1 Pedagogical Example

First, the ability of the EB-NARX model to learn different distributions is il-
lustrated. To do this, the method is applied to data generated using a simple
autoregressive (AR) model with different distributions for the noise;

yt = 0.95yt−1 + et. (15)

Four different distributions for the noise et are considered:

a) zero-mean Gaussian, et ∼ N (0, 0.22),
b) bimodal Gaussian, et ∼ 0.5N (0.4, 0.12) + 0.5N (−0.4, 0.12),
c) zero-mean Cauchy, et ∼ C(0, 0.22),
d) Gaussian with variance dependent on the systems state,

et ∼

{
N (0, 0.32) if |yt−1| < 0.5

N (0, 0.052) otherwise.
(16)

The learned distributions are shown in Figure 2. While Gaussian noise is often
a fair assumption, the utility of a more flexible noise model is made appar-
ent by considering that measurement outliers can be modelled by Student’s T
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(a) Gaussian (b) Bimodal Gaussian

(c) Cauchy (d) Dependent variance
Gaussian

Figure 2: Pedagogical example of learning different distributions using a deep EB-
NARX model from data generated using a simple AR model (15).

or Cauchy distributions. Moreover, in Section 4.4 the real data gives rise to
distribution that is conditional on xt and in some cases bimodal.

4.2 Linear ARX

To further build confidence in the method’s ability to learn the distribution
pθ(yt|xt), it is demonstrated on data generated using a second-order linear au-
toregressive eXogenous (ARX) model;

yt = 1.5yt−1 − 0.7yt−2 + ut−1 + 0.5ut−2 + et, (17)

where et ∼ 0.6N (0, 0.12)+0.4N (0, 0.32). An EB-NARXmodel is trained on
1000 data points and then used to predict the distribution for 200 validation data
points. Figure 3a shows part of the predicted sequence alongwith the truemean
and 95% confidence interval (CI). Figure 3b shows the prediction pθ(yt|xt)
for t = 56 given by the EB-NARX model and an ML estimate given by least-

V-8



(a) Sequence (b) t = 56

Figure 3: (a) Estimates of pθ(yt|xt) for a validation data sequence. The blue shading
indicates the 65%, 95%, 99%confidence regions. (b) The EB-NARXand least-squares
estimates and true distribution for t = 56.

squares1, compared to the true Gaussian mixture distribution. This illustrates
that the EB-NARX model is able to accurately learn the mixture distribution
and provide significantly more accurate quantification of the uncertainty than
a standard ML approach.

4.3 Simulated Nonlinear Problem

So far, the method has been demonstrated on linear problems for which the
learned distributions could be easily compared to the true distributions. The
method is now applied to data simulated using the nonlinear model [20];

y∗t =
(
0.8− 0.5e−y∗2

t−1

)
y∗t−1 −

(
0.3 + 0.9e−y∗2

t−1

)
y∗t−2

+ ut−1 + 0.2ut−2 + 0.1ut−1ut−2 + vt,

yt =y∗t + wt,

(18)

where vt ∼ N (0, σ2
v) and wt ∼ N (0, σ2

w). Using Du = Dy = 2, the per-
formance of the EB-NARX model is compared to that of an FCN for a range
of noise standard deviations and training sequence lengths in Table 1. These
results indicate that the EB-NARX model performs competitively with the
FCN for this data despite making no assumptions about the form of the dis-
tribution. An example of the predicted distributions for data generated using
σv = σw = 0.3 and N = 1000 is shown in Figure 4. Since training the
FCN using a squared-error loss function implicitly assumes Gaussian noise, it
is, therefore, possible to determine the Gaussian distribution for the estimates

1This ML estimate makes an implicit Gaussian assumption.
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Table 1: Simulated nonlinear MSE on the validation set for the FCN and EB-NARX
model trained on datasets generated with different noise levels (σv = σw = σ)
and lengths (N). Only the best results are reported from among the different hyper-
parameters and architectures considered (see Appendix A for details).

N = 100 N = 250 N = 500
FCN EB-NARX FCN EB-NARX FCN EB-NARX

σ = 0.1 0.122 0.099 0.069 0.070 0.057 0.054
σ = 0.3 0.398 0.390 0.353 0.354 0.289 0.308
σ = 0.5 0.860 0.869 0.809 0.822 0.754 0.779

(a) Sequence (b) t = 53

Figure 4: Estimates of pθ(yt|xt) for a validation data set generated using the nonlin-
ear ARX model presented by [20]. The blue shading indicates the 65%, 95%, 99%
confidence regions.

and compare this to the distribution learned using the EB-NARX model. The
variance of the FCN distribution has been calculated as the sample variance.

4.4 Real Data: Coupled Electric Drives

We now demonstrate the practical utility of the presented method by applica-
tion to the CE8 coupled electric drives benchmark data set [19]. The coupled
electric drives system, illustrated in Figure 5, consists of two electric motors
that drive a pulley using a flexible belt. The pulley is held by a spring and its
angular speed is measured by a pulse counter, which is insensitive to the sign
of the angular velocity. This creates an ambiguity in the measurements. The
input to the system is the signal sent to both motors.

The first three data sets described in [19], which use a random binary input sig-
nal, were combined into one set, that was then randomly split 50/50 between
training and validation, giving 750 data points in each set. This data was used
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Figure 5: Illustration of the CE8 coupled electric drives system [19].

to train an FCN and an EB-NARX model, with the delays Du = Dy = 3 and
the selection of hyperparameters and structure detailed in Appendix A.

The best result for the FCN was an MSE of 0.0521, and for the EB-NARX
model an MSE of 0.0503. Figure 6 shows examples of estimates produced
using the FCN and EB-NARX models. As in Section 4.3, the sample vari-
ance has been used for the Gaussian distribution of the FCN prediction. This
variance is constant for all time steps, whereas the EB-NARX model predicts
distinctly different and even non-Gaussian distributions at some time steps.

This example demonstrates the flexibility of the EB-NARX model since the
magnitude of the angular velocity is measured rather than the angular velocity
itself. This produces a sign ambiguity, which has an impact when the velocity
crosses zero (there is a reflection in the speed). Intuitively, we expect the mea-
surement distribution to be multi-modal around these points and indeed this
intuition is supported by the estimates from the EB-NARX model. In contrast,
the sample variance for the FCN predictions does not capture the dependence
of the distribution on xt and therefore over-estimates the variance away from
zero and under-estimates it close to zero.

5 Conclusion & Discussion
The salient feature of the EB-NARX model is that it has a highly flexible
functional form, which is capable of adapting both to simple and more com-
plex distributions. By contrast, more traditional approaches typically assume
a noise distribution that is convenient for learning purposes. While the exam-
ples demonstrate that this flexibility is quite useful, it should be noted that the
comparisons presented in this work only considered a relatively limited num-
ber of data sets, model types, and model structures. As such, a more thorough
comparison should be undertaken as future work.
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(a) pθ(yt|xt) sequence (b) t = 40

(c) t = 57 (d) t = 60

Figure 6: Estimates of pθ(yt|xt) for a sequence of validation data from the CE8 cou-
pled electric drives benchmark data set [19]. The blue shading indicates the 65%, 95%,
99% confidence regions. The sample variance was used to determine the variance of
the FCN assumed Gaussian distribution.

Given that the EB-NARX model is learning the full conditional distribution
rather than the point estimate, it might be expected that the performance of the
point predictions would suffer when compared to the standard application of an
FCN. However, for the particular data sets studied in the nonlinear simulation
example, the results in Table 1 indicate that the EB-NARX model approach
gives competitive point estimates. Further, when applied to a real data set
from the CE8 coupled electric drives system, the EB-NARXmodel gave point
estimates with a lower MSE than the estimates from a standard FCN. This
suggests that the EB-NARXmodelmay be a better choice when the conditional
distribution depends on the current state of the system.

In this work, the EB-NARX model was composed of two networks; a predic-
tor net and a feature net. This structure is suggested by [3] in the context of
regression tasks with high dimensional input spaces, such as images. Hence, it
may be less beneficial in the current setting where xt is typically of relatively
low dimension. The exploration of other structures that may be more suitable
in the system identification context is another avenue for future research.
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A limitation of the presented work is that it only considers one-step-ahead
predictions and not multi-step-ahead predictions or even free-run simulations.
Since the EB-NARXmodel predicts the full conditional distribution yet it takes
as inputs point data, it is not clear how these predictions could be propagated
forward in time. Whilst it would be possible to propagate the MAP estimate
this does remove the main benefit over the standard FCN approach and further
has questionable validity if the distribution is multimodal.

Finally, the presented work has only considered NARX systems and an inter-
esting area of future research would be to consider deep EBM’s for other types
of system identification problems.
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Appendix

A Hyper-Parameter and Structure Selection
For each data set, 500 FCN and EBM models were trained covering a range
of structures and hyper-parameters. For the FCN, the number of layers ranged
from 2 to 4. The dimension of each layer was varied from 50 to 300, and both
tanh and ReLU activation functions were considered. For the EBM, the fea-
ture net was composed of two fully connected layers with ReLU nonlinearities
and for the predictor net a neural network with four layers, tanh nonlinearities
and skip connections. The hidden dimension of both the feature and predictor
net was varied from 50 to 300.

For the training of both networks, batch sizes of 32, 64 and 128were considered
and training was carried out until the cost had plateaued. An initial learning
rate of 0.001 with a decay rate of 0.99 was used in all cases. A different random
seed was used to initialise the parameters each time.
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Evaluating Scalable Bayesian Deep
Learning Methods for Robust
Computer Vision

Abstract
While deep neural networks have become the go-to approach in computer
vision, the vast majority of these models fail to properly capture the uncer-
tainty inherent in their predictions. Estimating this predictive uncertainty can
be crucial, for example in automotive applications. In Bayesian deep learn-
ing, predictive uncertainty is commonly decomposed into the distinct types
of aleatoric and epistemic uncertainty. The former can be estimated by let-
ting a neural network output the parameters of a certain probability distribu-
tion. Epistemic uncertainty estimation is a more challenging problem, and
while different scalable methods recently have emerged, no extensive com-
parison has been performed in a real-world setting. We therefore accept this
task and propose a comprehensive evaluation framework for scalable epis-
temic uncertainty estimation methods in deep learning. Our proposed frame-
work is specifically designed to test the robustness required in real-world com-
puter vision applications. We also apply this framework to provide the first
properly extensive and conclusive comparison of the two current state-of-the-
art scalable methods: ensembling and MC-dropout. Our comparison demon-
strates that ensembling consistently provides more reliable and practically use-
ful uncertainty estimates. Code is available at https://github.com/
fregu856/evaluating_bdl.

1 Introduction
Deep Neural Networks (DNNs) have become the standard paradigm within
most computer vision problems due to their astonishing predictive power com-
pared to previous alternatives. Current applications includemany safety-critical
tasks, such as street-scene semantic segmentation [5, 6, 7], 3D object detec-
tion [8, 9] and depth completion [4, 10]. Since erroneous predictions can have
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Figure 1: We propose a comprehensive evaluation framework for scalable epistemic
uncertainty estimation methods in deep learning. The proposed framework employs
state-of-the-art DNN models on the tasks of depth completion and street-scene seman-
tic segmentation. All models are trained exclusively on synthetic data (the Virtual
KITTI [1] and Synscapes [2] datasets). We here show the input (left), prediction (cen-
ter) and estimated predictive uncertainty (right) for ensembling withM = 8 ensemble
members, on both synthetic and real (the KITTI [3, 4] and Cityscapes [5] datasets) ex-
ample validation images. Black pixels correspond to minimum predictive uncertainty,
white pixels to maximum uncertainty.

disastrous consequences, such applications require an accurate measure of the
predictive uncertainty. The vast majority of these DNN models do however
fail to properly capture the uncertainty inherent in their predictions. They are
thus not fully capable of the type of uncertainty-aware reasoning that is highly
desired e.g. in automotive applications.

The approach of Bayesian deep learning aims to address this issue in a princi-
pled manner. Here, predictive uncertainty is commonly decomposed into two
distinct types, which both should be captured by the learned DNN [11, 12].
Epistemic uncertainty accounts for uncertainty in the DNN model parameters,
while aleatoric uncertainty captures inherent and irreducible data noise. Input-
dependent aleatoric uncertainty about the target y arises due to e.g. noise and
ambiguities inherent in the input x. This is present for instance in street-scene
semantic segmentation, where image pixels at object boundaries are inherently
ambiguous, and in 3D object detection where the location of a distant object is
less certain due to noise and limited sensor resolution. In many computer vi-
sion applications, this aleatoric uncertainty can be effectively estimated by let-
ting a DNN directly output the parameters of a certain probability distribution,
modeling the conditional distribution p(y|x) of the target given the input. For
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classification tasks, a predictive categorical distribution is commonly realized
by a softmax output layer, although recent work has also explored Dirichlet
models [13, 14, 15]. For regression, Laplace and Gaussian models have been
employed [16, 17, 12, 18].

Directly predicting the conditional distribution p(y|x) with a DNN does how-
ever not capture epistemic uncertainty, as information about the uncertainty in
the model parameters is disregarded. This often leads to highly confident pre-
dictions that are incorrect, especially for inputs x that are not well-represented
by the training distribution [19, 18]. For instance, a DNN can fail to generalize
to unfamiliar weather conditions or environments in automotive applications,
but still generate confident predictions. Reliable estimation of epistemic uncer-
tainty is thus of great importance. However, this task has proven to be highly
challenging, largely due to the vast dimensionality of the parameter space,
which renders standard Bayesian inference approaches intractable. To tackle
this problem, a wide variety of approximations have been explored [20, 21, 22,
23, 24, 25, 26], but only a small number have been demonstrated to be appli-
cable even to the large-scale DNN models commonly employed in real-world
computer vision tasks. Among such scalable methods, MC-dropout [11, 12,
27, 28] and ensembling [18, 17, 16] are clearly the most widely employed, due
to their demonstrated effectiveness and simplicity. While scalable techniques
for epistemic uncertainty estimation recently have emerged, the research com-
munity however lacks a common and comprehensive evaluation framework for
such methods. Consequently, both researchers and practitioners are currently
unable to properly assess and compare newly proposed methods. In this work,
we therefore accept this task and set out to design exactly such an evaluation
framework, aiming to benefit and inspire future research in the field.

Previous studies have provided only partial insight into the performance of
different scalable methods for epistemic uncertainty estimation. Kendall and
Gal [12] evaluated MC-dropout alone on the tasks of semantic segmentation
and monocular depth regression, providing mainly qualitative results. Laksh-
minarayanan et al. [18] introduced ensembling as a non-Bayesian alternative
and found it to generally outperform MC-dropout. Their experiments were
however based on relatively small-scale models and datasets, limiting the real-
world applicability. Ilg et al. [16] compared ensembling and MC-dropout on
the task of optical-flow estimation, but only in terms of the AUSEmetric which
is a relative measure of the uncertainty estimation quality. While finding en-
sembling to be advantageous, their experiments were also limited to a fixed
number (M = 8) of ensemble members and MC-dropout forward passes, not
allowing a completely fair comparison. Ovadia et al. [29] also fixed the num-
ber of ensemble members, and moreover only considered classification tasks.
We improve upon this previous work and propose an evaluation framework
that actually enables a conclusive ranking of the compared methods.
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Contributions We propose a comprehensive evaluation framework for scal-
able epistemic uncertainty estimation methods in deep learning. The proposed
framework is specifically designed to test the robustness required in real-world
computer vision applications, and employs state-of-the-art DNNmodels on the
tasks of depth completion (regression) and street-scene semantic segmentation
(classification). It also employs a novel combination of quantitative evaluation
metrics which explicitly measures the reliability and practical usefulness of
estimated predictive uncertainties. We apply our proposed framework to pro-
vide the first properly extensive and conclusive comparison of the two current
state-of-the-art scalablemethods: ensembling and MC-dropout. This compari-
son demonstrates that ensembling consistently outperforms the highly popular
MC-dropout method. Our work thus suggests that ensembling should be con-
sidered the new go-to approach, and encourages future research to understand
and further improve its efficacy. Figure 1 shows example predictive uncer-
tainty estimates generated by ensembling. Our framework can also directly be
applied to compare other scalable methods, and we encourage external usage
with publicly available code.

In our proposed framework, we predict the conditional distribution p(y|x) in
order to estimate input-dependent aleatoric uncertainty. The methods for epis-
temic uncertainty estimation are then compared by quantitatively evaluating
the estimated predictive uncertainty in terms of the relative AUSE metric and
the absolute measure of uncertainty calibration. Our evaluation is the first to
include both these metrics, and furthermore we apply them to both regression
and classification tasks. To provide a deeper and more fair analysis, we also
study all metrics as functions of the number of samples M , enabling a highly
informative comparison of the rate of improvement. Moreover, we simulate
challenging real-world conditions found e.g. in automotive applications, where
robustness to out-of-domain inputs is required to ensure safety, by training our
models exclusively on synthetic data and evaluating the predictive uncertainty
on real-world data. By analyzing this important domain shift problem, we sig-
nificantly increase the practical applicability of our evaluation. We also com-
plement our real-world analysis with experiments on illustrative toy regression
and classification problems. Lastly, to demonstrate the evaluation rigor neces-
sary to achieve a conclusive comparison, we repeat each experiment multiple
times and report results together with the observed variation.

2 Predictive Uncertainty Estimation using Bayesian
Deep Learning

DNNs have been shown to excel at a wide variety of supervised machine learn-
ing problems, where the task is to predict a target value y ∈ Y given an input
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Figure 2: Toy regression problem illustrating the task of predictive uncertainty estima-
tion with DNNs. The true data generator p(y|x) is a Gaussian, where the mean is given
by the solid black line and the variance is represented in shaded gray. The predictive
mean and variance are given by the solid red line and the shaded red area, respectively.
(a) Training dataset with N =1000 examples. (b) A DNN trained to directly predict
the target y captures no notion of uncertainty. (c) A corresponding Gaussian DNN
model (2) trained via maximum-likelihood captures aleatoric but not epistemic uncer-
tainty. (d) The Gaussian model instead trained via approximate Bayesian inference (4)
captures both aleatoric and epistemic uncertainty.

x ∈ X . In computer vision, the input space X often corresponds to the space
of images. For classification problems, the target space Y consists of a finite
set of C classes, while a regression problem is characterized by a continuous
target space, e.g. Y = RK . For our purpose, a DNN is defined as a function
fθ : X → U , parameterized by θ ∈ RP , that maps an input x ∈ X to an output
fθ(x) ∈ U . Next, we cover alternatives for estimating both the aleatoric and
epistemic uncertainty in the predictions of DNN models.

Aleatoric Uncertainty In classification problems, aleatoric uncertainty is
commonly captured by predicting a categorical distribution p(y|x, θ). This
is implemented by letting the DNN predict logit scores fθ(x) ∈ RC , which are
then normalized by a Softmax function,

p(y|x, θ) = Cat(y; sθ(x)),
sθ(x) = Softmax(fθ(x)).

(1)

Given a training set of N i.i.d. sample pairs D = {X,Y } = {(xi, yi)}Ni=1,
(xi, yi) ∼ p(x, y), the data likelihood is obtained as p(Y |X, θ) =∏N

i=1 p(yi|xi, θ). The maximum-likelihood estimate of the model pa-
rameters, θ̂MLE, is obtained by minimizing the negative log-likelihood
−
∑

i log p(yi|xi, θ). For the Categorical model (1), this is equivalent to min-
imizing the well-known cross-entropy loss. At test time, the trained model
predicts the distribution p(y�|x�, θ̂MLE) over the target class variable y�, given
a test input x�. These DNN models are thus able to capture input-dependent
aleatoric uncertainty, by outputting less confident predictions for inherently
ambiguous cases.

In regression, the most common approach is to let the DNN directly predict
targets, y� = fθ̂(x

�). The parameters θ̂ are learned by minimizing e.g. the L2
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orL1 loss over the training dataset [8, 9]. However, such direct regression does
not model aleatoric uncertainty. Instead, recent work [16, 12, 18] has explored
predicting the distribution p(y|x, θ), similar to the classification case above.
For instance, p(y|x, θ) can be parameterized by a Gaussian distribution [17,
18], giving the following model in the 1D case,

p(y|x, θ) = N
(
y;µθ(x), σ

2
θ(x)

)
,

fθ(x) = [µθ(x) logσ2
θ(x) ]

T ∈ R2.
(2)

Here, the DNN predicts the mean µθ(x) and variance σ2
θ(x) of the target y.

The variance is naturally interpreted as a measure of input-dependent aleatoric
uncertainty. As in classification, the model parameters θ are learned by mini-
mizing the negative log-likelihood −

∑
i log p(yi|xi, θ).

Epistemic Uncertainty While the above models can capture aleatoric uncer-
tainty, stemming from the data, they are agnostic to the uncertainty in themodel
parameters θ. A principled means to estimate this epistemic uncertainty is to
perform Bayesian inference. The aim is to utilize the posterior distribution
p(θ|D), which is obtained from the data likelihood and a chosen prior p(θ) by
applying Bayes’ theorem. The uncertainty in the parameters θ is then marginal-
ized out to obtain the predictive posterior distribution,

p(y⋆|x⋆,D) =
∫

p(y⋆|x⋆, θ)p(θ|D)dθ

≈ 1

M

M∑
i=1

p(y⋆|x⋆, θ(i)), θ(i) ∼ p(θ|D) .
(3)

Here, the generally intractable integral in (3) is approximated usingM Monte
Carlo samples θ(i), ideally drawn from the posterior. In practice however, ob-
taining samples from the true posterior p(θ|D) is virtually impossible, requir-
ing an approximate posterior q(θ) ≈ p(θ|D) to be used. We thus obtain the
approximate predictive posterior as,

p̂(y⋆|x⋆,D) ≜ 1

M

M∑
i=1

p(y⋆|x⋆, θ(i)), θ(i) ∼ q(θ) , (4)

which enables us to estimate both aleatoric and epistemic uncertainty of the
prediction. The quality of the approximation (4) depends on the number of
samplesM and the method employed for generating q(θ). Prior work on such
approximate Bayesian inferencemethods is discussed in Section 3. For the Cat-
egorical model (1), p̂(y⋆|x⋆,D) = Cat(y⋆; ŝ(x⋆)), ŝ(x⋆) = 1

M

∑M
i=1 sθ(i)(x⋆).

For the Gaussian model (2), p̂(y⋆|x⋆,D) is a uniformly weighted mixture of
Gaussian distributions. We approximate this mixture with a single Gaussian,
see Appendix A for details.
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Illustrative Example To visualize and provide intuition for the problem of
predictive uncertainty estimation with DNNs, we consider the problem of re-
gressing a sinusoid corrupted by input-dependent Gaussian noise,

y ∼ N
(
µ(x), σ2(x)

)
,

µ(x) = sin(x), σ(x) = 0.15(1 + e−x)−1.
(5)

Training data {(xi, yi)}1000i=1 is only given in the interval [−3, 3], see Figure 2a.
A DNN trained to directly predict the target y is able to accurately regress
the mean for x⋆ ∈ [−3, 3], see Figure 2b. However, this model does not
capture any notion of uncertainty. A corresponding Gaussian DNN model (2)
trained via maximum-likelihood obtains a predictive distribution that closely
matches the ground truth for x⋆ ∈ [−3, 3], see Figure 2c. While correctly ac-
counting for aleatoric uncertainty, this model generates overly confident pre-
dictions for inputs |x⋆| > 3 not seen during training. Finally, the Gaussian
DNN model trained via approximate Bayesian inference (4), with a prior dis-
tribution p(θ) = N (0, IP ) andM = 1000 samples obtained via Hamiltonian
Monte Carlo [30], is additionally able to predict more reasonable uncertainties
in the region with no available training data, see Figure 2d.

3 Related Work
Here, we discuss prior work on approximate Bayesian inference. We also note
that ensembling, which is often considered a non-Bayesian alternative, in fact
can naturally be viewed as an approximate Bayesian inference method.

Approximate Bayesian Inference The method employed for approximating
the posterior q(θ) ≈ p(θ|D) = p(Y |X, θ)p(θ)/p(Y |X) is a crucial choice,
determining the quality of the approximate predictive posterior p̂(y⋆|x⋆,D)
in (4). There exists two main paradigms for constructing q(θ), the first one
being Markov chain Monte Carlo (MCMC) methods. Here, samples θ(i) ap-
proximately distributed according to the posterior are obtained by simulating
a Markov chain with p(θ|D) as its stationary distribution. For DNNs, this
approach was pioneered by Neal [20], who employed Hamiltonian Monte
Carlo (HMC) on small feed-forward neural networks. HMC entails perform-
ing Metropolis-Hastings [31, 32] updates using Hamiltonian dynamics based
on the potential energy U(θ) ≜ − log p(Y |X, θ)p(θ). To date, it is consid-
ered a “gold standard” method for approximate Bayesian inference, but does
not scale to large DNNs or large-scale datasets. Therefore, Stochastic Gradi-
ent MCMC (SG-MCMC) [33] methods have been explored, in which stochas-
tic gradients are utilized in place of their full-data counterparts. SG-MCMC
variants include Stochastic Gradient Langevin Dynamics (SGLD) [23], where
samples θ(i) are collected from the parameter trajectory given by the update
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equation θt+1 = θt − αt∇θŨ(θt) +
√
2αtϵt, where ϵt ∼ N (0, 1) and∇θŨ(θ)

is the stochastic gradient of U(θ). Save for the noise term
√
2αtϵt, this update

is identical to the conventional SGD update when minimizing the maximum-a-
posteriori (MAP) objective − log p(Y |X, θ)p(θ). Similarly, Stochastic Gradi-
ent HMC (SGHMC) [24] corresponds to SGD with momentum injected with
properly scaled noise. Given a limited computational budget, SG-MCMC
methods can however struggle to explore the high-dimensional and highly
multi-modal posteriors of large DNNs. To mitigate this problem, Zhang et
al. [34] proposed to use a cyclical stepsize schedule to help escaping local
modes in p(θ|D).

The second paradigm is that of Variational Inference (VI) [21, 35, 36, 22].
Here, a distribution qϕ(θ) parameterized by variational parameters ϕ is explic-
itly chosen, and the best possible approximation is found by minimizing the
Kullback-Leibler (KL) divergence with respect to the true posterior p(θ|D).
While principled, VI methods generally require sophisticated implementations,
especially for more expressive variational distributions qϕ(θ) [37, 38, 39]. A
particularly simple and scalable method is MC-dropout [40]. It entails using
dropout [41] also at test time, which can be interpreted as performing VI with
a Bernoulli variational distribution [40, 27, 28]. The approximate predictive
posterior p̂(y⋆|x⋆,D) in (4) is obtained by performing M stochastic forward
passes on the same input.

Ensembling Lakshminarayanan et al. [18] created a parametric model
p(y|x, θ) of the conditional distribution using a DNN fθ, and learned multi-
ple point estimates {θ̂(m)}Mm=1 by repeatedly minimizing the MLE objective
− log p(Y |X, θ) with random initialization. They then averaged over the cor-
responding parametric models to obtain the following predictive distribution,

p̂(y⋆|x⋆) ≜ 1

M

M∑
m=1

p(y⋆|x⋆, θ̂(m)). (6)

The authors considered this a non-Bayesian alternative to predictive uncer-
tainty estimation. However, since the point estimates {θ̂(m)}Mm=1 always can
be seen as samples from some distribution q̂(θ), we note that (6) is virtually
identical to the approximate predictive posterior in (4). Ensembling can thus
naturally be viewed as approximate Bayesian inference, where the level of ap-
proximation is determined by how well the implicit sampling distribution q̂(θ)
approximates the posterior p(θ|D). Ideally, {θ̂(m)}Mm=1 should be distributed
exactly according to p(θ|D) ∝ p(Y |X, θ)p(θ). Since p(Y |X, θ) is highly
multi-modal in the parameter space for DNNs [42, 43], so is p(θ|D). By mini-
mizing − log p(Y |X, θ) multiple times, starting from randomly chosen initial
points, we are likely to find different local optima. Ensembling can thus gen-
erate a compact set of samples {θ̂(m)}Mm=1 that, even for small values of M ,
captures this important aspect of multi-modality in p(θ|D).
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Figure 3: Toy binary classification problem. (a) True data generator, red and blue
represents the two classes. (b) Training dataset withN=1040 examples. (c) “Ground
truth” predictive distribution, obtained using HMC [30].

4 Experiments
We conduct experiments both on illustrative toy regression and classification
problems (Section 4.1), and on the real-world computer vision tasks of depth
completion (Section 4.2) and street-scene semantic segmentation (Section 4.3).
Our evaluation is motivated by real-world conditions found e.g. in automotive
applications, where robustness to varying environments and weather condi-
tions is required to ensure safety. Since images captured in these different
circumstances could all represent distinctly different regions of the vast input
image space, it is infeasible to ensure that all encountered inputs will be well-
represented by the training data. Thus, we argue that robustness to out-of-
domain inputs is crucial in such applications. To simulate these challenging
conditions and test the robustness required for such real-world scenarios, we
train all models on synthetic data and evaluate them on real-world data. To im-
prove rigour of our evaluation, we repeat each experiment multiple times and
report results together with the observed variation. A more detailed descrip-
tion of all results are found in the Appendix (Appendix B.3, C.2, D.2). All
experiments are implemented in PyTorch [44].

4.1 Illustrative Toy Problems

We first present results on illustrative toy problems to gain insights into how en-
sembling and MC-dropout fare against other approximate Bayesian inference
methods. For regression, we conduct experiments on the 1D problem defined
in (5) and visualized in Figure 2. We use the Gaussian model (2) with two
separate feed-forward neural networks outputting µθ(x) and logσ2

θ(x). We
evaluate the methods by quantitatively measuring how well the obtained pre-
dictive distributions approximate that of the “gold standard” HMC [30] with
M =1000 samples and prior p(θ) = N (0, IP ). We thus consider the predic-
tive distribution visualized in Figure 2d ground truth, and take as our metric
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(a) Ensembling. (b)MC-dropout. (c) Ensembling. (d)MC-dropout.

Figure 4: Illustrative toy problems - example predictive distributions for ensembling
and MC-dropout withM=16 samples.
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(a) Regression.
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(b) Classification.

Figure 5: Illustrative toy problems - quantitative results. The plots show the KL diver-
gence (↓) between the predictive distribution estimated by each method and the HMC
“ground truth”, for different number of samplesM .

the KL divergence DKL(p ‖ pHMC) with respect to this target distribution
pHMC. For classification, we conduct experiments on the binary classification
problem in Figure 3. The true data generator is visualized in Figure 3a, where
red and blue represents the two classes. The training dataset contains 520 ex-
amples of each class, and is visualized in Figure 3b. We use the Categorical
model (1) with a feed-forward neural network. As for regression, we quanti-
tatively measure how well the obtained predictive distributions approximate
that of HMC, which is visualized in Figure 3c. Further details are provided in
Appendix B.

Results A comparison of ensembling, MC-dropout, SGLD and SGHMC in
terms of DKL(p ‖ pHMC) is found in Figure 5. The Adam optimizer [45] is
here used for both ensembling and MC-dropout. We observe that ensembling
consistently outperforms the comparedmethods, andMC-dropout in particular.
Even compared to SG-MCMC variants such as SGLD and SGHMC, ensem-
bling thus provides a better approximation to the MCMC method HMC. This
result is qualitatively supported by visualized predictive distributions found
in Appendix B.5. Example predictive distributions for ensembling and MC-
dropout with M = 16 are shown in Figure 4. We observe that ensembling
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Figure 6: Depth completion - quantitative results. The plots show a comparison of
ensembling andMC-dropout in terms of AUSE, AUCE and RMSE on the KITTI depth
completion validation dataset, for different number of samplesM .

provides reasonable approximations to HMC even for quite small values of
M , especially compared to MC-dropout.

4.2 Depth Completion

In depth completion, we are given an image ximg ∈ Rh×w×3 from a forward-
facing camera and an associated sparse depth map xsparse ∈ Rh×w. Only non-
zero pixels of xsparse correspond to LiDAR depthmeasurements, projected onto
the image plane. The goal is to predict a dense depth map y ∈ Rh×w of the
scene. We utilize the KITTI depth completion [3, 4] and Virtual KITTI [1]
datasets. KITTI depth completion contains more than 80 000 images ximg,
sparse depth maps xsparse and semi-dense target maps y. There are 1 000 se-
lected validation examples, which we use for evaluation. Only about 4% of
the pixels in xsparse are non-zero and thus correspond to depth measurements.
The semi-dense target maps are created by merging the LiDAR scans from 11
consecutive frames into one, producing y in which roughly 30% of the pixels
are non-zero. Virtual KITTI contains synthetic images ximg and dense depth
maps xdense extracted from 5 driving sequences in a virtual world. It contains
2 126 unique frames, of which there are 10 different versions corresponding
to various simulated weather and lighting conditions. We take sequence 0002
as our validation set, leaving a total of 18 930 training examples. We create
targets y for training by setting all pixels in xdense corresponding to a depth
> 80m to 0, and then also randomly sample 5% of the remaining non-zero
pixels uniformly to create xsparse. We use the DNN model presented by Ma
et al. [10]. The inputs ximg, xsparse are separately processed by initial convolu-
tional layers, concatenated and fed to an encoder-decoder architecture based
on ResNet34 [46]. We employ the Gaussian model (2) by duplicating the fi-
nal layer, outputting both µ ∈ Rh×w and logσ2 ∈ Rh×w instead of only the
predicted depth map ŷ ∈ Rh×w. We also employ the same basic training pro-
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(a) Ensembling. (b)MC-dropout.

Figure 7: Depth completion - condensed calibration plots for ensembling and MC-
dropout withM = 16.

cedure as Ma et al. [10] to train all our models, see Appendix C.1 for details.
For the MC-dropout comparison, we take inspiration from Kendall et al. [27]
and place a dropout layer with drop probability p = 0.5 after the three last
encoder blocks and the four first decoder blocks.

Evaluation Metrics We evaluate the methods in terms of the Area Under
the Sparsification Error curve (AUSE) metric, as introduced by Ilg et al. [16].
AUSE is a relative measure of the uncertainty estimation quality, comparing
the ordering of predictions induced by the estimated predictive uncertainty
(sorted from least to most uncertain) with the “oracle” ordering in terms of the
true prediction error. The metric thus reveals how well the estimated uncer-
tainty can be used to sort predictions from worst (large true prediction error)
to best (small prediction error). We compute AUSE in terms of Root Mean
Squared Error (RMSE) and based on all pixels in the entire evaluation dataset.
A perfect AUSE score can however be achieved even if the true predictive
uncertainty is consistently underestimated. As an absolute measure of uncer-
tainty estimation quality, we therefore also evaluate themethods in terms of cal-
ibration [47, 48]. In classification, the Expected Calibration Error (ECE) [19,
49] is a standard metric used to evaluate calibration. A well-calibrated model
should then produce classification confidences which match the observed pre-
diction accuracy, meaning that the model is not over-confident (outputting
highly confident predictions which are incorrect), nor over-conservative. We
here employ a metric that can be considered a natural generalization of ECE to
the regression setting. Since our models output the mean µ ∈ R and variance
σ2 ∈ R of a Gaussian distribution for each pixel, we can construct pixel-wise
prediction intervals µ± Φ−1(p+1

2 )σ of confidence level p ∈]0, 1[, where Φ is
the CDF of the standard normal distribution. When computing the proportion
of pixels for which the prediction interval covers the true target y ∈ R, we
expect this value, denoted p̂, to equal p ∈]0, 1[ for a perfectly calibrated model.
We compute the absolute error with respect to perfect calibration, |p − p̂|, for
100 values of p ∈]0, 1[ and use the area under this curve as our metric, which
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Figure 8: Street-scene semantic segmentation - quantitative results. The plots show a
comparison of ensembling and MC-dropout in terms of AUSE, ECE and mIoU on the
Cityscapes validation dataset, for different number of samplesM .

we call Area Under the Calibration Error curve (AUCE). Lastly, we also eval-
uate in terms of the standard RMSE metric.

Results A comparison of ensembling and MC-dropout in terms of AUSE,
AUCE and RMSE on the KITTI depth completion validation dataset is found
in Figure 6. We observe in Figure 6a that ensembling consistently outperforms
MC-dropout in terms of AUSE. However, the curves decrease as a function of
M in a similar manner. Sparsification plots and sparsification error curves are
found in Appendix C.3. A ranking of the methods can be more readily con-
ducted based on Figure 6b, where we observe a clearly improving trend asM
increases for ensembling, whereasMC-dropout gets progressively worse. This
result is qualitatively supported by the calibration plots found in Appendix C.3
and Figure 7. Note thatM = 1 corresponds to the baseline of only estimating
aleatoric uncertainty.

4.3 Street-Scene Semantic Segmentation

In this task, we are given an image x ∈ Rh×w×3 from a forward-facing camera.
The goal is to predict y of size h × w, in which each pixel is assigned to one
of C different class labels (road, sidewalk, car, etc.). We utilize the popular
Cityscapes [5] and recent Synscapes [2] datasets. Cityscapes contains 5 000
finely annotated images, mainly collected in various German cities. The an-
notations includes 30 class labels, but only C = 19 are used in the training
of models. Its validation set contains 500 examples, which we use for evalua-
tion. Synscapes contains 25 000 synthetic images, all captured in virtual urban
environments. To match the size of Cityscapes, we randomly select 2 975 of
these for training and 500 for validation. The images are annotated with the
same class labels as Cityscapes. We use the DeepLabv3 DNNmodel presented
by Chen et al. [6]. The input image x is processed by a ResNet101 [46], out-
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(a) Ensembling. (b)MC-dropout.

Figure 9: Street-scene semantic segmentation - example reliability diagrams for the
two methods withM = 16.

putting a feature map of stride 8. The feature map is further processed by an
ASPP module and a 1 × 1 convolutional layer, outputting logits at 1/8 of the
original resolution. These are then upsampled to image resolution using bilin-
ear interpolation. The conventional Categorical model (1) is thus used for each
pixel. We base our implementation on the one by Yuan and Wang [7], and also
follow the same basic training procedure, see Appendix D.1 for details. For ref-
erence, the model obtains an mIoU [50] of 76.04%when trained on Cityscapes
and evaluated on its validation set. For the MC-dropout comparison, we take
inspiration from Mukhoti and Gal [28] and place a dropout layer with p = 0.5
after the four last ResNet blocks.

Evaluation Metrics As for depth completion, we evaluate the methods in
terms of the AUSE metric. In this classification setting, we compare the “or-
acle” ordering of predictions with the one induced by the predictive entropy.
We compute AUSE in terms of Brier score and based on all pixels in the eval-
uation dataset. We also evaluate in terms of calibration by the ECE metric [19,
49]. All predictions are here partitioned into L bins based on the maximum as-
signed confidence. For each bin, the difference between the average predicted
confidence and the actual accuracy is then computed, and ECE is obtained as
the weighted average of these differences. We use L = 10 bins of equal size.

Results A comparison of ensembling and MC-dropout in terms of AUSE,
ECE and mIoU on the Cityscapes validation dataset is found in Figure 8. We
observe that the metrics clearly improve as functions of M for both ensem-
bling and MC-dropout, demonstrating the importance of epistemic uncertainty
estimation. The rate of improvement is generally greater for ensembling. For
ECE, we observe in Figure 8b a drastic improvement for ensembling as M is
increased, followed by a distinct plateau. According to the condensed relia-
bility diagrams in Appendix D.3, this corresponds to a transition from clear
model over-confidence to slight over-conservatism. For MC-dropout, the cor-
responding diagrams suggest a stagnation while the model still is somewhat
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over-confident. Example reliability diagrams for M = 16 are shown in Fig-
ure 9, in which this over-confidence for MC-dropout can be observed. Note
that the relatively low mIoU scores reported in Figure 8c, obtained by models
trained exclusively on Synscapes, are expected [2] and caused by the intention-
ally challenging domain gap between synthetic and real-world data.

5 Discussion & Conclusion
We proposed a comprehensive evaluation framework for scalable epistemic
uncertainty estimation methods in deep learning. The proposed framework
is specifically designed to test the robustness required in real-world computer
vision applications. We applied our proposed framework and provided the first
properly extensive and conclusive comparison of ensembling andMC-dropout,
the results of which demonstrates that ensembling consistently provides more
reliable and practically useful uncertainty estimates. We attribute the success
of ensembling to its ability, due to the random initialization, to capture the
important aspect of multi-modality present in the posterior distribution p(θ|D)
of DNNs. MC-dropout has a large design-space compared to ensembling, and
while careful tuning of MC-dropout potentially could close the performance
gap on individual tasks, the simplicity and general applicability of ensembling
must be considered key strengths. The main drawback of both methods is the
computational cost at test time that grows linearly with M , limiting real-time
applicability. Here, future work includes exploring the effect of model pruning
techniques [51, 52] on predictive uncertainty quality. For ensembling, sharing
early stages of the DNN among ensemble members is also an interesting future
direction. A weakness of ensembling is the additional training required, which
also scales linearly with M . The training of different ensemble members can
however be performed in parallel, making it less of an issue in practice given
appropriate computing infrastructure. In conclusion, our work suggests that
ensembling should be considered the new go-to method for scalable epistemic
uncertainty estimation.
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Supplementary Material
In this supplementary material, we provide additional details and results. It
consists of Appendix A-D. Note that figures in this supplementary material
are numbered with the prefix “S”. Numbers without this prefix refer to the
main paper.

A Approximating a Mixture of Gaussian Distributions

For the Gaussian model (2), p̂(y⋆|x⋆,D) in (4) is a uniformly weighted mixture
of Gaussian distributions. We approximate this mixture with a single Gaussian
parameterized by the mixture mean and variance:

p̂(y⋆|x⋆,D) = 1

M

M∑
i=1

p(y⋆|x⋆, θ(i)), θ(i) ∼ q(θ),

p̂(y⋆|x⋆,D) = 1

M

M∑
i=1

N (y⋆;µθ(i)(x⋆), σ2
θ(i)(x

⋆)), θ(i) ∼ q(θ),

p̂(y⋆|x⋆,D) ≈ N (y⋆; µ̂(x⋆), σ̂2(x⋆)),

µ̂(x) =
1

M

M∑
i=1

µθ(i)(x), σ̂2(x) =
1

M

M∑
i=1

((
µθ(i)(x)− µ̂(x)

)2
+σ2

θ(i)(x)

)
.

B Illustrative Toy Problems
In this appendix, further details on the illustrative toy problems experiments
(Section 4.1) are provided.

B.1 Experimental Setup

Figure 5a (regression) showsDKL(p ∥ pHMC) computed on [−7, 7]. All train-
ing data was given in [−3, 3].

Figure 5b (classification) shows DKL(p ∥ pHMC) computed on the region
−6 ≤ x1 ≤ 6, −6 ≤ x2 ≤ 6. All training data was given in the region
0 ≤ x1 ≤ 3, −3 ≤ x2 ≤ 3.

For regression, DKL(p ∥ pHMC) is computed using the formula for KL di-
vergence between two Gaussian distributions p1(x) = N (x;µ1, σ

2
1), p2(x) =
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N (x;µ2, σ
2
2):

DKL(p1 ∥ p2) = log
σ2
σ1

+
σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1

2
.

For classification, DKL(p ∥ pHMC) is computed using the formula for KL
divergence between two discrete distributions q1(x), q2(x):

DKL(q1 ∥ q2) =
∑
x∈X

q1(x) log
q1(x)

q2(x)
.

For both regression and classification, HMC with prior p(θ) = N (0, IP )
and M = 1000 samples is implemented using Pyro [53]. Specifi-
cally, we use pyro.infer.mcmc.MCMC with pyro.infer.mcmc.NUTS as kernel,
num_samples = 1000 and warmup_steps = 1000.

B.2 Implementation Details

For regression, we use the Gaussian model (2) with two separate feed-forward
neural networks outputting µθ(x) and logσ2

θ(x). Both neural networks have 2
hidden layers of size 10.

For classification, we use the Categorical model (1) with a feed-forward neural
network with 2 hidden layers of size 10.

For theMC-dropout comparison, we place a dropout layer after the first hidden
layer of each neural network. For regression, we use a drop probability p = 0.2.
For classification, we use p = 0.1.

For ensembling, we train all ensemble models for 150 epochs with the Adam
optimizer, a batch size of 32 and a fixed learning rate of 0.001.

For MC-dropout, we train models for 300 epochs with the Adam optimizer, a
batch size of 32 and a fixed learning rate of 0.001.

For ensembling and MC-dropout, we minimize the MAP objective
− log p(Y |X, θ)p(θ). In our case where the model parameters θ ∈ RP and
p(θ) = N (0, IP ), this corresponds to the following loss for regression:

L(θ) =
1

N

N∑
i=1

(yi − µ̂(xi))
2

σ̂2(xi)
+ log σ̂2(xi) +

1

N
θTθ.

For classification, where yi = [ yi,1 . . . yi,C ]T (one-hot encoded) and ŝ(xi) =

[ ŝ(xi)1 . . . ŝ(xi)C ]T is the Softmax output, it corresponds to the following
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loss:

L(θ) = − 1

N

N∑
i=1

C∑
k=1

yi,k log ŝ(xi)k +
1

2N
θTθ.

For SGLD, we extract samples from the parameter trajectory given by the up-
date equation:

θt+1 = θt − αt∇θŨ(θt) +
√
2αtϵt,

where ϵt ∼ N (0, 1), ∇θŨ(θ) is the stochastic gradient of U(θ) =
− log p(Y |X, θ)p(θ) and αt is the stepsize. We run it for a total number of
steps corresponding to 256 · 150 epochs with a batch size of 32. The stepsize
αt is decayed according to:

αt = α0(1−
t

T
)0.9, t = 1, 2, . . . , T,

where T is the total number of steps, α0 = 0.01 (the initial stepsize) for regres-
sion and α0 = 0.05 for classification. M ∈ {8, 16, 32, 64, 128, 256} samples
are extracted starting at step t = int(0.75T ), ending at step t = T and spread
out evenly between.

For SGHMC, we extract samples from the parameter trajectory given by the
update equation:

θt+1 = θt + rt,

rt+1 = (1− η)rt − αt∇θŨ(θt) +
√

2ηαtϵt,

where ϵt ∼ N (0, 1), ∇θŨ(θ) is the stochastic gradient of U(θ) =
− log p(Y |X, θ)p(θ), αt is the stepsize and η = 0.1. We run it for a total
number of steps corresponding to 256 ·150 epochs with a batch size of 32. The
stepsize αt is decayed according to:

αt = α0(1−
t

T
)0.9, t = 1, 2, . . . , T,

where T is the total number of steps, α0 = 0.001 (the initial stepsize) for
regression and α0 = 0.01 for classification. M ∈ {8, 16, 32, 64, 128, 256}
samples are extracted starting at step t = int(0.75T ), ending at step t = T and
spread out evenly between.

For all models, we randomly initialize the parameters θ using the default ini-
tializer in PyTorch.

B.3 Description of Results

The results in Figure 5a, 5b were obtained in the following way:
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• Ensembling: 1024 models were trained using the same training proce-
dure, the mean and standard deviation was computed based on 1024/M
unique sets of models forM ∈ {8, 16, 32, 64, 128, 256}.

• MC-dropout: 10models were trained using the same training procedure,
based on which the mean and standard deviation was computed.

• SGLD: 6 models were trained using the same training procedure, based
on which the mean and standard deviation was computed.

• SGHMC: 6 models were trained using the same training procedure,
based on which the mean and standard deviation was computed.

B.4 Additional Results

Figure S1 and Figure S2 show the same comparison as Figure 5a, 5b, but using
SGD and SGD with momentum for ensembling and MC-dropout, respectively.
We observe that ensembling consistently outperforms the compared methods
for classification, but that SGLD and SGHMC has better performance for re-
gression in these cases. SGLD and SGHMC are however trained for 256 times
longer than each ensemble model, complicating the comparison somewhat. If
SGLD and SGHMC instead are trained for just 64 times longer than each en-
semble model, we observe in Figure S3 that they are consistently outperformed
by ensembling.

For MC-dropout using Adam, we also varied the drop probability p and chose
the best performing variant. These results are found in Figure S4, in which *
marks the chosen variant.

B.5 Qualitative Results

Here, we show visualizations of predictive distributions obtained by the differ-
ent methods. Figure S5, S9 for ensembling, Figure S6, S10 for MC-dropout,
Figure S7, S11 for SGLD, and Figure S8, S12 for SGHMC.
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Figure S1: Illustrative toy problems, quantitative results. SGD is used for ensembling
and MC-dropout instead of Adam.
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Figure S2: Illustrative toy problems, quantitative results. SGD with momentum is
used for ensembling and MC-dropout instead of Adam.
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Figure S3: Illustrative toy regression problem, quantitative results. SGD with mo-
mentum is used for ensembling and MC-dropout instead of Adam. Less training for
SGLD and SGHMC.
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Figure S4: Illustrative toy problems, quantitative results. MC-dropout using Adam.

Figure S5: Toy regression problem, ensembling, M = 64. Examples of predictive
distributions.

Figure S6: Toy regression problem, MC-dropout, M = 64. Examples of predictive
distributions.

Figure S7: Toy regression problem, SGLD, M = 64. Examples of predictive distri-
butions.

Figure S8: Toy regression problem, SGHMC, M = 64. Examples of predictive dis-
tributions.

VI-25



Paper VI – Evaluating Scalable Bayesian Deep Learning Methods

Figure S9: Toy classification problem, ensembling,M = 64. Examples of predictive
distributions.

Figure S10: Toy classification problem, MC-dropout, M = 64. Examples of predic-
tive distributions.

Figure S11: Toy classification problem, SGLD, M = 64. Examples of predictive
distributions.

Figure S12: Toy classification problem, SGHMC, M = 64. Examples of predictive
distributions.
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C Depth Completion
In this appendix, further details on the depth completion experiments (Sec-
tion 4.2) are provided.

C.1 Training Details

For both ensembling and MC-dropout, we train all models for 40 000 steps
with the Adam optimizer, a batch size of 4, a fixed learning rate of 10−5 and
weight decay of 0.0005. We use a smaller batch size and train for fewer steps
thanMa et al. [10] to enable an extensive evaluation with repeated experiments.
For the same reason, we also train on randomly selected image crops of size
352 × 352. The only other data augmentation used is random flipping along
the vertical axis. We follow Ma et al. [10] and randomly initialize all network
weights from N (0, 10−3) and all network biases with 0s. Models are trained
on a single NVIDIA TITAN Xp GPU with 12GB of RAM.

C.2 Description of Results

The results in Figure 6 (Section 4.2) were obtained in the following way:

• Ensembling: 33models were trained using the same training procedure,
the mean and standard deviation was computed based on 32 (M = 1), 16
(M = 2, 4, 8, 16) or 4 (M = 32) sets of randomly drawn models. The
same set could not be drawn more than once.

• MC-dropout: 16models were trained using the same training procedure,
based on which the mean and standard deviation was computed.

C.3 Additional Results

Here, we show sparsification plots, sparsification error curves and calibration
plots. Examples of sparsification plots are found in Figure S13 for ensem-
bling and Figure S14 for MC-dropout. Condensed sparsification error curves
are found in Figure S15 for ensembling and Figure S16 for MC-dropout. Con-
densed calibration plots are found in Figure S17 for ensembling and Figure S18
for MC-dropout.
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(a)M = 1. (b)M = 2.

(c)M = 4. (d)M = 8.

(e)M = 16. (f)M = 32.

Figure S13: Results for ensembling on the KITTI depth completion validation dataset.
Examples of sparsification plots.
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(a)M = 1. (b)M = 2.

(c)M = 4. (d)M = 8.

(e)M = 16. (f)M = 32.

Figure S14: Results for MC-dropout on the KITTI depth completion validation
dataset. Examples of sparsification plots.
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(a)M = 1. (b)M = 2.

(c)M = 4. (d)M = 8.

(e)M = 16. (f)M = 32.

Figure S15: Results for ensembling on the KITTI depth completion validation dataset.
Condensed sparsification error curves.
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(a)M = 1. (b)M = 2.

(c)M = 4. (d)M = 8.

(e)M = 16. (f)M = 32.

Figure S16: Results for MC-dropout on the KITTI depth completion validation
dataset. Condensed sparsification error curves.
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(a)M = 1. (b)M = 2.

(c)M = 4. (d)M = 8.

(e)M = 16. (f)M = 32.

Figure S17: Results for ensembling on the KITTI depth completion validation dataset.
Condensed calibration plots.
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(a)M = 1. (b)M = 2.

(c)M = 4. (d)M = 8.

(e)M = 16.

Figure S18: Results for MC-dropout on the KITTI depth completion validation
dataset. Condensed calibration plots.
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D Street-Scene Semantic Segmentation
In this appendix, further details on the street-scene semantic segmentation ex-
periments (Section 4.3) are provided.

D.1 Training Details

For ensembling, we train all ensemble models for 40 000 steps with SGD +
momentum (0.9), a batch size of 8 and weight decay of 0.0005. The learning
rate αt is decayed according to:

αt = α0(1−
t

T
)0.9, t = 1, 2, . . . , T,

where T = 40 000 and α0 = 0.01 (the initial learning rate). We train on
randomly selected image crops of size 512 × 512. We choose a smaller crop
size than Yuan and Wang [7] to enable an extensive evaluation with repeated
experiments. The only other data augmentation used is random flipping along
the vertical axis and random scaling in the range [0.5, 1.5]. The ResNet101
backbone is initialized with weights1 from a model pretrained on the ImageNet
dataset, all other model parameters are randomly initialized using the default
initializer in PyTorch. Models are trained on two NVIDIA TITAN Xp GPUs
with 12GB of RAM each. For MC-dropout, models are instead trained for
60 000 steps.

D.2 Description of Results

The results in Figure 8 (Section 4.3) were obtained in the following way:

• Ensembling: 26models were trained using the same training procedure,
the mean and standard deviation was computed based on 8 sets of ran-
domly drawn models for M ∈ {1, 2, 4, 8, 16}. The same set could not
be drawn more than once.

• MC-dropout: 8models were trained using the same training procedure,
based on which the mean and standard deviation was computed.

D.3 Additional Results

Here, we show sparsification plots, sparsification error curves and reliability
diagrams. Examples of sparsification plots are found in Figure S19 for ensem-

1http://sceneparsing.csail.mit.edu/model/pretrained_resnet/
resnet101-imagenet.pth.
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bling and Figure S20 for MC-dropout. Condensed sparsification error curves
are found in Figure S21 for ensembling and Figure S22 for MC-dropout. Ex-
amples of reliability diagrams with histograms are found in Figure S23 for
ensembling and Figure S24 for MC-dropout. Condensed reliability diagrams
are found in Figure S25 for ensembling and Figure S26 for MC-dropout.

(a)M = 1. (b)M = 2.

(c)M = 4. (d)M = 8.

(e)M = 16.

Figure S19: Results for ensembling on the Cityscapes validation dataset. Examples
of sparsification plots.
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(a)M = 1. (b)M = 2.

(c)M = 4. (d)M = 8.

(e)M = 16.

Figure S20: Results for MC-dropout on the Cityscapes validation dataset. Examples
of sparsification plots.
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(a)M = 1. (b)M = 2.

(c)M = 4. (d)M = 8.

(e)M = 16.

Figure S21: Results for ensembling on the Cityscapes validation dataset. Condensed
sparsification error curves.
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(a)M = 1. (b)M = 2.

(c)M = 4. (d)M = 8.

(e)M = 16.

Figure S22: Results forMC-dropout on the Cityscapes validation dataset. Condensed
sparsification error curves.
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(a)M = 1. (b)M = 2.

(c)M = 4. (d)M = 8.

(e)M = 16.

Figure S23: Results for ensembling on the Cityscapes validation dataset. Examples
of reliability diagrams with histograms.
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(a)M = 1. (b)M = 2.

(c)M = 4. (d)M = 8.

(e)M = 16.

Figure S24: Results for MC-dropout on the Cityscapes validation dataset. Examples
of reliability diagrams with histograms.
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(a)M = 1. (b)M = 2.

(c)M = 4. (d)M = 8.

(e)M = 16.

Figure S25: Results for ensembling on the Cityscapes validation dataset. Condensed
reliability diagrams.
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(a)M = 1. (b)M = 2.

(c)M = 4. (d)M = 8.

(e)M = 16.

Figure S26: Results forMC-dropout on the Cityscapes validation dataset. Condensed
reliability diagrams.
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How Reliable is Your Regression
Model’s Uncertainty Under
Real-World Distribution Shifts?

Abstract
Many important computer vision applications are naturally formulated as re-
gression problems. Within medical imaging, accurate regression models have
the potential to automate various tasks, helping to lower costs and improve pa-
tient outcomes. Such safety-critical deployment does however require reliable
estimation of model uncertainty, also under the wide variety of distribution
shifts that might be encountered in practice. Motivated by this, we set out to
investigate the reliability of regression uncertainty estimation methods under
various real-world distribution shifts. To that end, we propose an extensive
benchmark of 8 image-based regression datasets with different types of chal-
lenging distribution shifts. We then employ our benchmark to evaluate many
of the most common uncertainty estimation methods, as well as two state-of-
the-art uncertainty scores from the task of out-of-distribution detection. We
find that while methods are well calibrated when there is no distribution shift,
they all become highly overconfident on many of the benchmark datasets. This
uncovers important limitations of current uncertainty estimation methods, and
the proposed benchmark therefore serves as a challenge to the research com-
munity. We hope that our benchmark will spur more work on how to develop
truly reliable regression uncertainty estimation methods. Code is available at
https://github.com/fregu856/regression_uncertainty.

1 Introduction
Regression is a fundamental machine learning problem with many important
computer vision applications [1, 2, 3, 4, 5, 6]. In general, it entails predicting
continuous targets y from given inputs x. Within medical imaging, a number
of tasks are naturally formulated as regression problems, including brain age
estimation [7, 8, 9], prediction of cardiovascular volumes and risk factors [10,
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Figure 1: We propose a benchmark consisting of 8 image-based regression datasets,
testing the reliability of regression uncertainty estimation methods under real-world
distribution shifts. Example train (top row) and test inputs x, along with the corre-
sponding ground truth targets y, are here shown for each of the 8 datasets.

11] and body composition analysis [12, 13]. If machine learning models could
be deployed to automatically regress various such properties within real-world
clinical practice, this would ultimately help lower costs and improve patient
outcomes across the medical system [14].

Real-world deployment inmedical applications, andwithin other safety-critical
domains, does however put very high requirements on such regression mod-
els. In particular, the common approach of training a deep neural network
(DNN) to directly output a predicted regression target ŷ = f(x) is not suf-
ficient, as it fails to capture any measure of uncertainty in the predictions ŷ.
The model is thus unable to e.g. detect inputs x which are out-of-distribution
(OOD) compared to its training data. Since the predictive accuracy of DNNs
typically degrades significantly on OOD inputs [15, 16], this could have po-
tentially catastrophic consequences. Much research effort has therefore been
invested into various approaches for training uncertainty-aware DNN models
[17, 18, 19, 20, 21], to explicitly estimate the uncertainty in the predictions.

These uncertainty estimates must however be accurate and reliable. Other-
wise, if the model occasionally becomes overconfident and outputs highly con-
fident yet incorrect predictions, providing uncertainty estimates might just in-
still a false sense of security – arguably making the model even less suitable
for safety-critical deployment. Specifically, the uncertainty estimates must be
well calibrated and properly align with the prediction errors [22, 23]. More-
over, the uncertainty must remain well calibrated also under the wide variety of
distribution shifts that might be encountered during practical deployment [24,
25]. For example in medical applications, a model trained on data collected
solely at a large urban hospital in the year 2020, for instance, should output
well-calibrated predictions also in 2023, for patients both from urban and rural
areas. While uncertainty calibration, as well as general DNN robustness [26],
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has been evaluated under distribution shifts for classification tasks [27], this
important problem is not well-studied for regression.

Motivated by this, we set out to investigate the reliability of regression uncer-
tainty estimation methods under various real-world distribution shifts. To that
end, we propose an extensive benchmark consisting of 8 image-based regres-
sion datasets (see Figure 1) with different types of distribution shifts. These are
all publicly available and relatively large-scale datasets (6 592 - 20 614 train-
ing images), yet convenient to store and train models on (64× 64 images with
1D regression targets). Four of the datasets are also taken from medical ap-
plications, with clinically relevant distribution shifts. We evaluate some of
the most commonly used regression uncertainty estimation methods, includ-
ing conformal prediction, quantile regression and what is often considered the
state-of-the-art – ensembling [27, 28]. We also consider the approach of selec-
tive prediction [29], in which the regression model can abstain from outputting
predictions for certain inputs. This enables us to evaluate uncertainty scores
from the rich literature on OOD detection [30]. Specifically, we evaluate two
recent scores based on feature-space density [31, 32, 33, 34].

In total, we evaluate 10 different methods. Among them, we find that not a sin-
gle one is close to being perfectly calibrated across all datasets. While themeth-
ods are well calibrated on baseline variants with no distribution shifts, they all
become highly overconfident on many of our benchmark datasets. Also the
conformal prediction methods suffer from this issue, despite their commonly
promoted theoretical guarantees. This highlights the importance of always be-
ing aware of underlying assumptions, assessing whether or not they are likely
to hold in practice. Methods based on the state-of-the-art OOD uncertainty
scores perform well relative to other methods, but are also overconfident in
many cases – the absolute performance is arguably still not sufficient. Our pro-
posed benchmark thus serves as a challenge to the research community, and
we hope that it will spur more work on how to develop truly reliable regression
uncertainty estimation methods.

Summary of Contributions We collect a set of 8 large-scale yet convenient
image-based regression datasets with different types of challenging distribu-
tion shifts. Utilizing this, we propose a benchmark for testing the reliability of
regression uncertainty estimation methods under real-world distribution shifts.
We then employ our benchmark to evaluate many of the most common uncer-
tainty estimation methods, as well as two state-of-the-art uncertainty scores
from OOD detection. We find that all methods become highly overconfident
on many of the benchmark datasets, thus uncovering limitations of current un-
certainty estimation methods.
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2 Background
In a regression problem, the task is to predict a target y⋆ ∈ Y for any given
input x⋆ ∈ X . To solve this, we are also given a train set of i.i.d. input-target
pairs, Dtrain = {(xi, yi)}Ni=1, (xi, yi) ∼ p(x, y). What separates regression
from classification is that the target space Y is continuous, Y = RK . In this
work, we only consider the 1D case, i.e. when Y = R. Moreover, the input
space X here always corresponds to the space of images.

Prediction Intervals, Coverage & Calibration Given a desired miscoverage
rate α, a prediction interval Cα(x

⋆) = [Lα(x
⋆), Uα(x

⋆)] ⊆ R is a function
that maps the input x⋆ onto an interval that should cover the true regression
target y⋆ with probability 1−α. For any set {(x⋆i , y⋆i )}N

⋆

i=1 ofN⋆ examples, the
empirical interval coverage is the proportion of inputs for which the prediction
interval covers the corresponding target,

Coverage(Cα) =
1

N⋆

N⋆∑
i=1

I{y⋆i ∈ Cα(x
⋆
i )}. (1)

If the coverage equals 1− α, we say that the prediction intervals are perfectly
calibrated. Unless stated otherwise, we set α = 0.1 in this work. The predic-
tion intervals should thus obtain a coverage of 90%.

2.1 Regression Uncertainty Estimation Methods

The most common approach to image-based regression is to train a DNN
fθ : X → R that outputs a predicted target ŷ = fθ(x) for any input x, us-
ing e.g. the L2 or L1 loss [6]. We are interested in methods which extend this
standard direct regression approach to also provide uncertainty estimates for
the predictions. Specifically, we consider methods which output a prediction
interval Cα(x) and a predicted target ŷ(x) ∈ Cα(x) for each input x. The
uncertainty in the prediction ŷ(x) is then quantified as the length of the inter-
val Cα(x) (larger interval - higher uncertainty). Some of the most commonly
used regression uncertainty estimation methods fall under this category, as de-
scribed in more detail below.

Conformal Prediction The standard regression approach can be extended by
utilizing the framework of split conformal prediction [35, 36, 21]. This entails
splitting the train set {(xi, yi)}Ni=1 into a proper train set I1 and a calibration set
I2. The DNN fθ is trained on I1, and absolute residuals R = {|yi − fθ(xi)| :
i ∈ I2} are computed on the calibration set I2. Given a new input x⋆, a
prediction interval Cα(x

⋆) is then constructed from the prediction fθ(x⋆) as,

Cα(x
⋆) = [fθ(x

⋆)−Q1−α(R, I2), fθ(x
⋆) +Q1−α(R, I2)], (2)
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where Q1−α(R, I2) is the (1− α)-th quantile of the absolute residuals R. Un-
der the assumption of exchangeably drawn train and test data, this prediction
interval is guaranteed to satisfy P{y⋆ ∈ Cα(x

⋆)} ≥ 1−α (marginal coverage
guarantee). The interval Cα(x

⋆) has a fixed length of 2Q1−α(R, I2) for all
inputs x⋆.

Quantile Regression A DNN can also be trained to directly output prediction
intervals of input-dependent length, utilizing the quantile regression approach
[37, 21, 38]. This entails estimating the conditional quantile function qα(x) =
inf{y ∈ R : FY |X(y|x) ≥ α}, where FY |X is the conditional cumulative
distribution function. Specifically, a DNN is trained to output estimates of the
lower and upper quantiles qαlo(x), qαup(x) at αlo = α/2 and αup = 1 − α/2.
Given a new input x⋆, a prediction intervalCα(x

⋆) can then be directly formed,

Cα(x
⋆) = [qαlo

θ (x⋆), q
αup
θ (x⋆)]. (3)

The estimated quantiles qαlo
θ (x⋆), qαup

θ (x⋆) can be output by a single DNN fθ,
trained using the pinball loss [39]. A prediction ŷ(x⋆) can also be extracted as
the center point of Cα(x

⋆).

Probabilistic Regression Another approach is to explicitly model the con-
ditional distribution p(y|x), for example using a Gaussian model pθ(y|x) =
N
(
y;µθ(x), σ

2
θ(x)

)
[40, 41]. A single DNN fθ can be trained to output both

the mean µθ(x) and variance σ2
θ(x) by minimizing the corresponding nega-

tive log-likelihood. For a given input x⋆, a prediction interval can then be
constructed as,

Cα(x
⋆)=[µθ(x

⋆)− σθ(x
⋆)Φ−1(1− α/2), µθ(x

⋆) + σθ(x
⋆)Φ−1(1− α/2)],

(4)
where Φ is the CDF of the standard normal distribution. The mean µθ(x

⋆) is
also taken as a prediction ŷ.

Epistemic Uncertainty From the Bayesian perspective, quantile regression
and Gaussian models capture aleatoric (inherent data noise) but not epistemic
uncertainty, which accounts for uncertainty in the model parameters [18, 19].
This can be estimated in a principled manner via Bayesian inference, and var-
ious approximate methods have been explored [42, 43, 17, 44]. In practice, it
has been shown difficult to beat the simple approach of ensembling [20, 27],
which entails trainingM models {fθi}Mi=1 and combining their predictions. For
Gaussian models, a single mean µ̂ and variance σ̂2 can be computed as,

µ̂(x⋆)=
1

M

M∑
i=1

µθi(x
⋆), σ̂2(x⋆)=

1

M

M∑
i=1

((
µ̂(x⋆)− µθi(x

⋆)
)2

+ σ2
θi(x

⋆)

)
,

(5)
and then plugged into (4) to construct a prediction interval Cα(x

⋆) for a given
input x⋆.
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2.2 Selective Prediction

The framework of selective prediction has been applied both to classification
[45, 29] and regression problems [46]. The general idea is to give a model
the option to abstain from outputting predictions for some inputs. This is
achieved by combining the prediction model fθ with an uncertainty function
κf : X → R. Given an input x⋆, the prediction fθ(x

⋆) is output if the un-
certainty κf (x

⋆) ≤ τ (for some user-specified threshold τ ), otherwise x⋆ is
rejected and no prediction is made. The prediction rate is the proportion of
inputs for which a prediction is output,

Predition Rate =
1

N⋆

N⋆∑
i=1

I{κf (x⋆i ) ≤ τ}. (6)

In principle, if high uncertainty κf (x⋆) corresponds to a large prediction error
|y⋆ − ŷ(x⋆)| and vice versa, small errors will be achieved for all predictions
which are actually output by the model. Specifically in this work, we combine
selective prediction with the regression methods from Section 2.1. A predic-
tion interval Cα(x

⋆) and predicted target ŷ(x⋆) are thus output if and only if
(iff) κf (x⋆) ≤ τ . Our aim is for this to improve the calibration (interval cov-
erage closer to 1− α) of the output prediction intervals.

For the uncertainty function κf (x), the variance σ̂2(x) of a Gaussian ensemble
(5) could be used, for example. One could also use some of the various uncer-
tainty scores employed in the rich OOD detection literature [30]. In OOD
detection, the task is to distinguish in-distribution inputs x, inputs which are
similar to those of the train set {(xi, yi)}Ni=1, from out-of-distribution inputs.
A principled approach to OOD detection would be to fit a model of p(x) on
the train set. Inputs x for which p(x) is small are then deemed OOD [47]. In
our considered case where inputs x are images, modelling p(x) can however be
quite challenging. Tomitigate this, a feature extractor g : X → RDx can be uti-
lized, modelling p(x) indirectly by fitting a simple model to the feature vectors
g(x). In the classification setting, [31] fit a Gaussian mixture model (GMM)
to the feature vectors {g(xi)}Ni=1 of the train set. Given an input x⋆, it is then
deemed OOD if the GMM density GMM

(
g(x⋆)

)
is small. [32] apply this ap-

proach also to regression problems. Instead of fitting a GMM to the feature
vectors and evaluating its density, [33, 34] compute the distance kNN

(
g(x⋆)

)
between g(x⋆) and its k nearest neighbors in the train set {g(xi)}Ni=1. The
input x⋆ is then deemed OOD if this kNN distance is large.
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3 Proposed Benchmark
We propose an extensive benchmark for testing the reliability of regression un-
certainty estimation methods under real-world distribution shifts. The bench-
mark consists of 8 publicly available image-based regression datasets, which
are described in detail in Section 3.1. Our complete evaluation procedure, eval-
uating uncertainty estimation methods mainly in terms of prediction interval
coverage, is then described in Section 3.2.

3.1 Datasets

In an attempt to create a standard benchmark for image-based regression under
distribution shifts, we collect and modify 8 datasets from the literature. Two of
them contain synthetic images while the remaining six are real-world datasets,
four of which are taken from medical applications. Examples from each of the
8 datasets are shown in Figure 1. We create two additional variants of each
of the synthetic datasets, thus resulting in 12 datasets in total. They are all
relatively large-scale (6 592 - 20 614 train images) and contain input images
x of size 64 × 64 along with 1D regression targets y. Descriptions of all 12
datasets are given below (further details are also provided in Appendix A),
starting with the two synthetic datasets and their variants.

Cells Given a synthetic fluorescencemicroscopy image x, the task is to predict
the number of cells y in the image. We utilize the Cell-200 dataset from [48,
49], consisting of 200 000 grayscale images of size 64×64. We randomly draw
10 000 train images, 2 000 val images and 10 000 test images. Thus, there is no
distribution shift between train/val and test. We therefore use this as a baseline
dataset.

Cells-Tails A variant of Cells with a clear distribution shift between train/val
and test. For train/val, the regression targets y are limited to ]50, 150]. For test,
the targets instead lie in the original range [1, 200].

Cells-Gap Another variant of Cells with a clear distribution shift between
train/val and test. For train/val, the regression targets y are limited to
[1, 50[∪]150, 200]. For test, the targets instead lie in the original [1, 200].

ChairAngle Given a synthetic image x of a chair, the task is to predict the
yaw angle y of the chair. We utilize the RC-49 dataset [48, 49], which contains
64× 64 images of different chair models rendered at yaw angles ranging from
0.1◦ to 89.9◦. We randomly split their training set and obtain 17 640 train
images and 4 410 val images. By sub-sampling their test set we also get 11 225
test images. There is no clear distribution shift between train/val and test, and
we therefore use this as a second baseline dataset.
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ChairAngle-Tails A variant of ChairAngle with a clear distribution shift be-
tween train/val and test. For train/val, we limit the regression targets y to
]15, 75[. For test, the targets instead lie in the original ]0, 90[.

ChairAngle-Gap Another variant ofChairAnglewith a clear distribution shift.
For train/val, the regression targets y are limited to ]0, 30[∪]60, 90[. For test,
the targets instead lie in the original ]0, 90[.

AssetWealth Given a satellite image x, the task is to predict the asset wealth in-
dex y of the region. We utilize the PovertyMap-Wilds dataset from [16], which
is a variant of the dataset collected by [50]. We use the training, validation-ID
and test-OOD subsets of the data, giving us 9 797 train images, 1 000 val im-
ages and 3 963 test images. We resize the images from size 224×224 to 64×64.
Train/val and test contain satellite images from disjoint sets of African coun-
tries, creating a distribution shift.

VentricularVolume Given an echocardiogram image x of a human heart, the
task is to predict the volume y of the left ventricle. We utilize the EchoNet-
Dynamic dataset [51], which contains 10 030 echocardiogram videos. Each
video captures a complete cardiac cycle and is labeled with the left ventricular
volume at two separate time points, representing end-systole (at the end of
contraction) and end-diastole (just before contraction). For each video, we
extract just one of these volume measurements along with the corresponding
video frame. To create a clear distribution shift between train/val and test, we
select the end systolic volume (smaller volume) for train and val, but the end
diastolic volume (larger volume) for test. We utilize the provided dataset splits,
giving us 7 460 train images, 1 288 val images and 1 276 test images.

BrainTumourPixels Given an image slice x of a brainMRI scan, the task is to
predict the number of pixels y in the image which are labeled as brain tumour.
We utilize the brain tumour dataset of the medical segmentation decathlon [52,
53], which is a subset of the data used in the 2016 and 2017 BraTS challenges
[54, 55, 56]. The dataset contains 484 brain MRI scans with corresponding
tumour segmentationmasks. We split these scans 80%/20%/20% into train, val
and test sets. The scans are 3D volumes of size 240× 240× 155. We convert
each scan into 155 image slices of size 240×240, and create a regression target
for each image by counting the number of labeled brain tumour pixels. This
gives us 20 614 train images, 6 116 val images and 6 252 test images.

SkinLesionPixels Given a dermatoscopic image x of a pigmented skin le-
sion, the task is to predict the number of pixels y in the image which are la-
beled as lesion. We utilize the HAM10000 dataset by [57], which contains
10 015 dermatoscopic images with corresponding skin lesion segmentation
masks. HAM10000 consists of four different sub-datasets, three of which
were collected in Austria, while the fourth sub-dataset was collected in Aus-
tralia. To create a clear distribution shift between train/val and test, we use the
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Australian sub-dataset as our test set. After randomly splitting the remaining
images 85%/15% into train and val sets, we obtain 6 592 train images, 1 164
val images and 2 259 test images.

HistologyNucleiPixels Given an H&E stained histology image x, the task is
to predict the number of pixels y in the image which are labeled as nuclei. We
utilize the CoNSeP dataset by [58], along with the pre-processed versions they
provide of the Kumar [59] and TNBC [60] datasets. The datasets contain large
H&E stained image tiles, with corresponding nuclear segmentationmasks. The
three datasets were collected at different hospitals/institutions, with differing
procedures for specimen preservation and staining. By using CoNSeP and
Kumar for train/val and TNBC for test, we thus obtain a clear distribution shift.
From the large image tiles, we extract 64 × 64 patches via regular gridding,
and create a regression target for each image patch by counting the number
of labeled nuclei pixels. In the end, we obtain 10 808 train images, 2 702 val
images and 2 267 test images.

AerialBuildingPixels Given an aerial image x, the task is to predict the num-
ber of pixels y in the image which are labeled as building. We utilize the Inria
aerial image labeling dataset [61], which contains 180 large aerial images with
corresponding building segmentation masks. The images are captured at five
different geographical locations. We use the images from two densely popu-
lated American cities for train/val, and the images from a more rural European
area for test, thus obtaining a clear distribution shift. After preprocessing, we
obtain 11 184 train images, 2 797 val images and 3 890 test images.

Constructing these custom datasets is one of our main contributions. This is
what enables us to propose an extensive benchmark of large-scale yet conve-
nient datasets (which are all publicly available), containing different types of
challenging distribution shifts, specifically for image-based regression.

3.2 Evaluation

We propose to evaluate regression uncertainty estimation methods mainly in
terms of prediction interval coverage (1): if a method outputs a prediction
ŷ(x) and a 90% prediction interval C0.1(x) for each input x, does the method
actually achieve 90% coverage on the test set? I.e., are the prediction intervals
calibrated?

Motivation Regression uncertainty estimation methods can be evaluated us-
ing various approaches. One alternative is sparsification [62], measuring how
well the uncertainty can be used to sort predictions from worst to best. Per-
fect sparsification can however be achieved even if the absolute scale of the
uncertainty is consistently underestimated. Therefore, a lot of previous work
has instead evaluated methods in terms of calibration [22, 23]. Specifically
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for regression, a common form of calibration is based on quantiles [63, 64,
65]. Essentially, a model is there said to be calibrated if the interval cover-
age (1) equals 1 − α for all miscoverage rates α ∈]0, 1[. This is measured by
the expected calibration error, ECE = 1

m

∑m
j=1

∣∣Coverage(Cαj
) − (1 − αj)

∣∣,
αj ∼ U(0, 1). Our proposed evaluation metric is thus a special case of this ap-
proach, considering just one specific miscoverage rate α = 0.1. We argue that
this results in a simpler and more interpretable metric, which also is motivated
by how prediction intervals actually are used in real-world applications. There,
one particular value of α is selected (α = 0.1 is a common choice), and the
corresponding intervalsCα are then expected to achieve a coverage of 1−α on
unseen test data. Recent alternative calibration metrics directly measure how
well the uncertainty aligns with the prediction errors [66, 67]. While these en-
able relative comparisons of different methods, they are not easily interpretable
in terms of absolute performance.

Implementation Details For each dataset and method, we first train a DNN
on the train set Dtrain. Then, we run the method on the val set Dval, resulting
in a prediction interval Cα(x) = [Lα(x), Uα(x)] for each input x (α = 0.1).
Importantly, we then calibrate these prediction intervals on val using the pro-
cedure in [21]. This gives calibrated prediction intervals C̃α(x), for which
the interval coverage on val exactly equals 1 − α. Specifically, C̃α(x) is con-
structed from the original interval Cα(x) = [Lα(x), Uα(x)],

C̃α(x) = [Lα(x)−Q1−α(E,Dval), Uα(x) +Q1−α(E,Dval)], (7)

where E={max
(
Lα(xi) − yi, yi − Uα(xi)

)
: i∈Dval} are conformity scores

computed onDval, andQ1−α(E,Dval) is the (1−α)-th quantile of these scores.
Finally, we then run the method on the test set Dtest, outputting a calibrated
prediction interval C̃α(x

⋆) for each input x⋆. Ideally, the interval coverage of
C̃α(x

⋆) does not change from val to test, i.e. Coverage(C̃α) = 1−α should be
true also on test. If Coverage(C̃α) ̸= 1−α, a conservative method (> 1−α) is
preferred compared to an overconfident method (< 1−α). For methods based
on selective prediction (Section 2.2), the only difference is that prediction in-
tervals C̃α(x

⋆) are output only for some test inputs x⋆ (iff κf (x⋆) ≤ τ ). The
interval coverage is thus computed only on this subset of test. This is similar
to the notion of “selective calibration” discussed for the classification setting
by [68]. We set α = 0.1 since this is a commonly used miscoverage rate in
practice.

Secondary Metrics We also evaluate methods in terms of mean absolute er-
ror (MAE) and average interval length on the val set. This measures the qual-
ity of the prediction ŷ(x) and the prediction interval Cα(x), respectively [22].
The average interval length is a natural secondary metric, since a method that
achieves a coverage close to 1 − α but outputs extremely large intervals for
all inputs x, not would be particularly useful in practice. Moreover, if two dif-
ferent methods both are perfectly calibrated, i.e. Coverage(Cα) = 1 − α, the
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method producing smaller prediction intervals would be preferred. For meth-
ods based on selective prediction (which output predictions only for certain
inputs x), the proportion of inputs for which a prediction actually is output is
another natural secondary metric. For these methods, we thus also evaluate in
terms of the prediction rate (6) on test. If a coverage close to 1−α is achieved
with a very low prediction rate, the method might still not be practically useful
in certain applications. For two perfectly calibrated methods, one with a higher
prediction rate would be preferred.

4 Evaluated Methods
We evaluate five common regression uncertainty estimation methods from Sec-
tion 2.1, which all output a prediction interval Cα(x) and a predicted target
ŷ(x) ∈ Cα(x) for each input x. Two of these we also combine with selective
prediction (Section 2.2), utilizing four different uncertainty functions κf (x).
In total, we evaluate 10 different methods. For all methods, we train models
based on a ResNet34 [69] backbone DNN. This architecture is chosen because
of its simplicity and widespread use. The ResNet takes an image x as input
and outputs a feature vector g(x) ∈ R512. Below we specify and provide im-
plementation details for each of the 10 evaluated methods, while we refer back
to Section 2 for more general descriptions.

Conformal Prediction We create a standard direct regression model by feed-
ing the ResNet feature vector g(x) into a network head of two fully-connected
layers, outputting a scalar prediction fθ(x). The model is trained using the L2
loss. We then utilize conformal prediction to create prediction intervals Cα(x)
according to (2). Instead of splitting the train images into I1 and I2, we use
the val images as the calibration set I2.

Ensemble We train an ensemble {fθ1 , . . . , fθM} of M = 5 direct regres-
sion models and compute the ensemble mean µ̂(x) = 1

M

∑M
i=1 fθi(x) and

ensemble variance σ̂2(x) = 1
M

∑M
i=1

(
µ̂(x) − fθi(x)

)2. By inserting these
into equation 4, prediction intervals Cα(x) of input-dependent length are then
constructed.

Gaussian We create a Gaussian model pθ(y|x) = N
(
y;µθ(x), σ

2
θ(x)

)
by

feeding the ResNet feature vector g(x) into two separate network heads of
two fully-connected layers. These output the mean µθ(x) and variance σ2

θ(x),
respectively. Prediction intervals Cα(x) are then constructed according to (4).

Gaussian Ensemble We train an ensemble ofM = 5 Gaussian models, com-
pute a single mean µ̂(x) and variance σ̂2(x) according to (5), and plug these
into (4) to construct prediction intervals Cα(x).
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Quantile Regression We create a quantile regression model by feeding the
ResNet feature vector g(x) into two separate network heads. These output the
quantiles qαlo

θ (x), q
αup
θ (x), directly forming prediction intervals Cα(x) accord-

ing to (3). The model is trained by minimizing the average pinball loss of
qαlo
θ (x) and qαup

θ (x).

Gaussian + Selective GMM We combine the Gaussian method with a se-
lective prediction mechanism. After training a Gaussian model, we run it on
each image in train to extract ResNet feature vectors {g(xi)}Ni=1. We then uti-
lize scikit-learn [70] to fit a GMM (4 components, full covariance) to these
train feature vectors. To compute an uncertainty score κf (x) for a given input
x, we extract g(x) and evaluate its likelihood according to the fitted GMM,
κf (x) = −GMM

(
g(x)

)
. The prediction µθ(x) and corresponding prediction

intervalCα(x) of the Gaussian model are then output iff κf (x) ≤ τ . To set the
user-specified threshold τ , we compute κf (x) on all images in val and pick the
95% quantile. This choice of τ is motivated by the commonly reported FPR95
OOD detection metric, but τ could be set using other approaches.

Gaussian + Selective kNN Identical to Gaussian + Selective GMM, but
κf (x) = kNN

(
g(x)

)
. Specifically, the uncertainty score κf (x) is computed

by extracting g(x) and computing the average distance to its k = 10 nearest
neighbors among the train feature vectors {g(xi)}Ni=1. Following [34], we uti-
lize the Annoy1 approximate neighbors library, with cosine similarity as the
distance metric.

Gaussian + Selective Variance Identical to Gaussian + Selective GMM, but
κf (x) = σ2

θ(x) (the variance of the Gaussian model). This is used as a simple
baseline for the two previous methods.

Gaussian Ensemble + SelectiveGMM We combineGaussian Ensemblewith
a selective prediction mechanism. After training an ensemble of M = 5
Gaussian models, we run each model on each image in train to extract M
sets of ResNet feature vectors. For each model, we then fit a GMM to its
set of train feature vectors. I.e., we fit M different GMMs. To compute
an uncertainty score κf (x) for a given input x, we extract a feature vector
and evaluate its likelihood according to the corresponding GMM, for each
of the M models. Finally, we compute the mean of the GMM likelihoods,
κf (x) =

1
M

∑M
i=1−GMMi

(
gi(x)

)
.

Gaussian Ensemble + Selective Ensemble Variance Identical to Gaussian
Ensemble + Selective GMM, but κf (x) = 1

M

∑M
i=1

(
µ̂(x) − µθi(x)

)2, where
µ̂(x) = 1

M

∑M
i=1 µθi(x). Hence, the variance of the ensemble means is used

as the uncertainty score. This constitutes a simple baseline for the previous
method.

1https://github.com/spotify/annoy
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All models are trained for 75 epochs using the ADAM optimizer [71]. The
same hyperparameters are used for all datasets, and neither the training proce-
dure nor the models are specifically tuned for any particular dataset. All experi-
ments are implemented using PyTorch [72], and our complete implementation
is made publicly available. All models were trained on individual NVIDIA
TITAN Xp GPUs. On one such GPU, training 20 models on one dataset took
approximately 24 hours. We chose to train all models based on a ResNet34
backbone because it is widely used across various applications, yet simple to
implement and quite computationally inexpensive. The proposed benchmark
and the evaluated uncertainty estimation methods are however entirely inde-
pendent of this specific choice of DNN backbone architecture. Exploring the
use of other more powerful models and evaluating how this affects the relia-
bility of uncertainty estimation methods is an interesting direction which we
leave for future work.

5 Related Work
Out-of-distribution robustness of DNNs is an active area of research [15, 73,
26, 74, 75, 76, 77, 78]. All these previous works do however focus exclusively
on classification tasks. Moreover, they consider no uncertainty measures but
instead evaluate only in terms of accuracy. While [79, 80] evaluate uncertainty
calibration, they also just consider the classification setting. In contrast, eval-
uation of uncertainty estimation methods is our main focus, and we do this
specifically for regression.

The main sources of inspiration for our work are [16] and [27]. While [16]
propose an extensive benchmark with various real-world distribution shifts, it
only contains a single regression dataset. Moreover, methods are evaluated
solely in terms of predictive performance. [27] perform a comprehensive eval-
uation of uncertainty estimation methods under distribution shifts, but only
consider classification tasks. Inspired by this, we thus propose our benchmark
for evaluating reliability of uncertainty estimation methods under real-world
distribution shifts in the regression setting. Most similar to our work is that of
[81]. However, their benchmark contains just two regression datasets (tabular
weather prediction and a complex vehicle motion prediction task), they only
evaluate ensemble-based uncertainty estimation methods, and these methods
are not evaluated in terms of calibration.
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6 Results
We evaluate the 10 methods specified in Section 4 on all 12 datasets from
Section 3.1, according to the evaluation procedure described in Section 3.2.
For each method we train 20models, randomly select 5 of them for evaluation
and report the averaged metrics. For the ensemble methods, we construct an
ensemble by randomly selectingM = 5 out of the 20 trained models, evaluate
the ensemble and then repeat this 5 times in total. To ensure that the results do
not depend on our specific choice of α = 0.1, we also evaluate methods with
two alternative miscoverage rates. While the main paper only contains results
for α = 0.1, we repeat most of the evaluation for α = 0.2 and α = 0.05 in
Appendix B, observing very similar trends overall.

6.1 Common Uncertainty Estimation Methods

We start by evaluating the first fivemethods from Section 4, those which output
predictions and corresponding 90% prediction intervals for all inputs. The re-
sults in terms of our main metric test coverage are presented in the upper part
of Figure 2 for the synthetic datasets, and in Figure 3 for the six real-world
datasets. In the lower parts of Figure 2 & 3, results in terms of average val
interval length are presented. The complete results, including our other sec-
ondary metric val MAE, are provided in Table A1 - Table A12 in the appendix.
Please note that, because we utilize a new benchmark consisting of custom
datasets, we are not able to directly compare the MAE of our models with that
of any previous work from the literature.

In Figure 2, the test coverage results on the first synthetic dataset Cells are
found in the upper-left. As there is no distribution shift between train/val and
test for this dataset, we use it as a baseline. We observe that all five methods
have almost perfectly calibrated prediction intervals, i.e. they all obtain a test
coverage very close to 90%. This is exactly the desired behaviour. On Cells-
Tails however, on which we introduced a clear distribution shift, we observe
in Figure 2 that the test coverage drops dramatically from the desired 90%
for all five methods. Even the state-of-the-art uncertainty estimation method
Gaussian Ensemble here becomes highly overconfident, as its test coverage
drops down to ≈ 59%. On Cells-Gap, the test coverages are slightly closer to
90%, but all five methods are still highly overconfident. On the other synthetic
dataset ChairAngle, we observe in Figure 2 that all five methods have almost
perfectly calibrated prediction intervals. However, as we introduce clear dis-
tribution shifts on ChairAngle-Tails and ChairAngle-Gap, we can observe that
the test coverage once again drops dramatically for all methods.

The results on the six real-world datasets are found in Figure 3. In the up-
per part, we observe that all five methods have quite well-calibrated prediction
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Figure 2: Results for the five common regression uncertainty estimation methods
(which output predictions and corresponding 90% prediction intervals for all inputs),
on the six synthetic datasets. Top: Results in terms of our main metric test coverage. A
perfectly calibrated method would achieve a test coverage of exactly 90%, as indicated
by the solid line. Bottom: Results in terms of average val interval length.

intervals on AssetWealth and BrainTumourPixels, even though they all are con-
sistently somewhat overconfident (test coverages of 82%-89%). On the four
remaining datasets, the methods are in general more significantly overconfi-
dent. On VentricularVolume, we observe test coverages of 60%-80% for all
methods, and on SkinLesionPixels the very best coverage is ≈ 82%. On His-
tologyNucleiPixels, most methods only obtain test coverages of 55%-70%, and
on AerialBuildingPixels the very best coverage is ≈ 81%. In fact, not a single
method actually reaches the desired 90% test coverage on any of these real-
world datasets.

In terms of average val interval length, we observe in the lower parts of Fig-
ure 2 & 3 that Ensemble consistently produces smaller prediction intervals than
Conformal Prediction. Moreover, the intervals of Gaussian Ensemble are usu-
ally smaller than those of Gaussian. When comparing the interval lengths of
Quantile Regression andGaussian, we observe no clear trend that is consistent
across all datasets. Since the average interval lengths vary a lot between dif-
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Figure 3: Results for the five common regression uncertainty estimation methods
(which output predictions and corresponding 90% prediction intervals for all inputs),
on the six real-world datasets. Top: Results in terms of our main metric test coverage.
Bottom: Results in terms of average val interval length.

ferent datasets, Figure 2 & 3 only show relative comparisons of the methods.
For absolute numerical scales, see Table A1 - Table A12.

To further study how the test coverage performance is affected by distribution
shifts, we also apply the five methods to three additional variants of the Cells
dataset. Cells has no difference in regression target range between train/val
and test, whereas for Cells-Tails the target range is ]50, 150] for train/val and
[1, 200] for test. By creating three variants with intermediate target ranges, we
thus obtain a sequence of five datasets with increasing degrees of distribution
shifts, starting with Cells (no distribution shift) and ending with Cells-Tails
(maximum distribution shift). The test coverage results on this sequence of
datasets are presented in the upper part of Figure 4. We observe that as the
degree of distribution shift is increased step-by-step, the test coverage also
drops accordingly. The lower part of Figure 4 presents the results of a sim-
ilar experiment, in which we construct a sequence of five datasets starting
withChairAngle (no distribution shift) and ending withChairAngle-Gap (max-
imum distribution shift). Also in this case, we observe that the test coverage
drops step-by-step along with the increased degree of distribution shift.
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Figure 4: Test coverage results for the five common regression uncertainty estimation
methods, on synthetic datasets with increasing degrees of distribution shifts. Top:
FromCells (no distribution shift) toCells-Tails (maximum distribution shift). Bottom:
From ChairAngle to ChairAngle-Gap.

A study of the relative performance of the five methods on the real-world
datasets, in terms of all three metrics (test coverage, average val interval length,
val MAE), is finally presented in Figure A1 - Figure A3 in the appendix. One
can clearly observe that Ensemble and Gaussian Ensemble achieve the best
performance, thus indicating that ensembling multiple models indeed helps to
improve the performance.

6.2 Selective Prediction Methods

Next, we evaluate the methods with an added selective prediction mechanism.
We start with the three methods based on Gaussian. The results in terms of
test coverage and test prediction rate are available in Figure 5 for the synthetic
datasets, and in Figure 6 for the six real-world datasets. While a complete
evaluation of these methods also should include the average val interval length,
we note that the selective prediction mechanism does not modify the intervals
of the underlyingGaussianmethod (which already has been evaluated in terms
of interval length in Section 6.1). Here, we therefore focus on the test coverage
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Figure 5: Results for the three selective prediction methods based on Gaussian, on
the six synthetic datasets. Top: Results in terms of our main metric test coverage.
Bottom: Results in terms of test prediction rate (the proportion of test inputs for which
a prediction actually is output).

and test prediction rate. Complete numerical results are provided in Table A1
- Table A12 in the appendix.

In the upper part of Figure 5, we observe that selective prediction based on
feature-space density significantly improves the test coverage of Gaussian on
the synthetic datasets. WhileGaussian has well-calibrated prediction intervals
only on Cells and ChairAngle, which are baseline datasets without any distri-
bution shift, Gaussian + Selective GMM is almost perfectly calibrated across
all six datasets. On Cells-Tails, for example, it improves the test coverage
from ≈ 54% up to ≈ 89%. Gaussian + Selective kNN also significantly im-
proves the test coverages, but not quite to the same extent. In the lower part of
Figure 5, we can observe that when Gaussian + Selective GMM significantly
improves the test coverage, there is also a clear drop in its test prediction rate.
For example, the prediction rate drops from ≈ 0.95 on Cells down to ≈ 0.54
onCells-Tails. By rejecting nearly 50%of all inputs as OOD in this case,Gaus-
sian + Selective GMM can thus remain well-calibrated on the subset of test it
actually outputs predictions for. In Figure 5, we also observe that Gaussian +
Selective Variance only marginally improves the test coverage.
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Figure 6: Results for the three selective prediction methods based on Gaussian, on
the six real-world datasets. Top: Results in terms of test coverage. Bottom: Results
in terms of test prediction rate.

While Gaussian + Selective GMM significantly improves the test coverage
of Gaussian and has well-calibrated prediction intervals across the synthetic
datasets, we observe in Figure 6 that this is not true for the six real-world
datasets. Gaussian + Selective GMM does consistently improve the test cov-
erage, but only marginally, and it still suffers from significant overconfidence
in many cases. On VentricularVolume, for example, the test prediction rate of
Gaussian + Selective GMM is as low as ≈ 0.71, but the test coverage only
improves from ≈ 73% to ≈ 75% compared to Gaussian.

For the two methods based on Gaussian Ensemble, the results are presented
in Figure A4 & A5 in the appendix. Overall, we observe very similar trends.
Gaussian Ensemble + Selective GMM significantly improves the test coverage
of Gaussian Ensemble and is almost perfectly calibrated across the synthetic
datasets. However, when it comes to the real-world datasets, it often remains
significantly overconfident.

Finally, Figure A6 presents a relative comparison of the five selective predic-
tion methods across all 12 datasets, in terms of average test coverage error
(absolute difference between empirical and expected interval coverage) and
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average test prediction rate. We observe that Gaussian Ensemble + Selective
GMM achieves the best test coverage error, but also has the lowest test pre-
diction rate. In fact, each improvement in terms of test coverage error also
corresponds to a decrease in test prediction rate for these five methods, mean-
ing that there seems to be an inherent trade-off between the two metrics.

7 Discussion
Let us now analyze the results from Section 6 in more detail, and discuss what
we consider the most important findings and insights. First of all, we can ob-
serve that among the 10 considered methods, not a single one was close to
producing perfectly calibrated prediction intervals across all 12 datasets. We
thus conclude that our proposed benchmark indeed is challenging and interest-
ing. Moreover, the results in Figure 2 & 3 demonstrate that while common
uncertainty estimation methods are well calibrated when there is no distribu-
tion shift (Cells and ChairAngle), they can all break down and become highly
overconfident in many realistic scenarios. This highlights the importance of
employing sufficiently realistic and thus challenging benchmarks when evalu-
ating uncertainty estimation methods. Otherwise, we might be lead to believe
that methods will be more reliable during practical deployment than they actu-
ally are.

Coverage Guarantees Might Instill a False Sense of Security We also want
to emphasize that Conformal Prediction and Quantile Regression2 have theo-
retical coverage guarantees, but still are observed to become highly overcon-
fident for many datasets in Figure 2 & 3. Since the guarantees depend on the
assumption that all data points are exchangeable (true for i.i.d. data, for in-
stance), which generally does not hold under distribution shifts, these results
should actually not be surprising. The results are however a good reminder
that we always need to be aware of the underlying assumptions, and whether
or not they are likely to hold in common practical applications. Otherwise,
such theoretical guarantees might just instill a false sense of security, making
us trust methods more than we actually should.

Clear Performance Differences between Synthetic and Real-World Data
We find it interesting that selective prediction based on feature-space density,
in particular Gaussian + Selective GMM, works almost perfectly in terms of
test coverage across the synthetic datasets (Figure 5), but fails to give signifi-
cant improvements on the real-world datasets (Figure 6). The results on Ven-
tricularVolume are particularly interesting, as the prediction rate drops quite a
lot without significantly improving the test coverage. This means that while a

2Since all prediction intervals are calibrated on val, we are using Conformalized Quantile Re-
gression [21].

VII-20



relatively large proportion of the test inputs are deemed OOD and thus rejected
by the method, the test coverage is barely improved. On the synthetic datasets,
there is a corresponding improvement in test coverage whenever the prediction
rate drops significantly (Figure 5). It is not clear why such an obvious perfor-
mance difference between synthetic and real-world datasets is observed. One
possible explanation is that real-world data requires better models for p(x),
i.e. that the relatively simple approaches based on feature-space density not
are sufficient. Properly explaining this performance difference is an important
problem, but we will here leave this as an interesting direction for future work.

OOD Uncertainty Scores Perform Well, but Not Well Enough Compar-
ing the selective prediction methods, we observe that Gaussian + Selective
GMM consistently outperforms Gaussian + Selective Variance (Figure 5 & 6)
and that Gaussian Ensemble + Selective GMM outperforms Gaussian Ensem-
ble + Selective Ensemble Variance in most cases (Figure A4 & A5). Relative
to common uncertainty estimation baselines, methods based on feature-space
density thus achieve very strong performance. This is in line with the state-of-
the-art OOD detection performance that has been demonstrated recently. In
our results, we can however clearly observe that while feature-space methods
perform well relative to common baselines, the resulting selective prediction
methods are still overconfident in many cases – the absolute performance is
still far from perfect. Using our benchmark, we are thus able to not only com-
pare the relative performance of different OOD uncertainty scores, but also
evaluate their performance in an absolute sense.

Performance Differences among Real-World Datasets are Mostly Logical
When we compare the performance on the different real-world datasets in Fig-
ure 3, all methods are relatively well-calibrated on BrainTumourPixels and
AssetWealth. For BrainTumourPixels, the train, val and test splits were cre-
ated by randomly splitting the original set of MRI scans. The distribution shift
between train/val and test is thus also fairly limited. For AssetWealth (satel-
lite images from different African countries), the shift is likely quite limited
at least compared to AerialBuildingPixels (satellite images from two different
continents). Finally, the results for HistologyNucleiPixels are interesting, as
this is the only dataset where Conformal Prediction clearly obtains the best
test coverage. It is not clear why the methods which output prediction inter-
vals of input-dependent length struggle on this particular dataset.

Finally, we should emphasize that while test coverage is our main metric, this
by itself is not sufficient for a method to be said to “perform well” in a general
sense. For example, a perfectly calibrated method with a low test prediction
rate might not be particularly useful in practice. While even very low test
prediction rates likely would be tolerated in many medical applications and
other safety-critical domains (as long as the method stays perfectly calibrated),
one can imaginemore low-risk settings where this calibration versus prediction
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rate trade-off is a lot less clear. Since not a single one of the evaluated methods
was close to being perfectly calibrated across all 12 datasets, we did however
mainly focus on analyzing the test coverage in this paper. If multiple methods
had performed well in terms of test coverage, a more detailed analysis and
discussion of the secondary metrics performance would have been necessary.

The main actionable takeaways from our work can be summarized as:

• All methods are well calibrated on baseline datasets with no distribu-
tion shift, but become highly overconfident in many realistic scenarios.
Uncertainty estimation methods must therefore be evaluated using suf-
ficiently challenging benchmarks. Otherwise, one might be lead to be-
lieve that methods will be more reliable during real-world deployment
than they actually are.

• Conformal prediction methods have commonly promoted theoretical
coverage guarantees, but these depend on an assumption that is unlikely
to hold in many practical applications. Consequently, also these methods
can become highly overconfident in realistic scenarios. If the underlying
assumptions are not examined critically by practitioners, such theoretical
guarantees risk instilling a false sense of security – making these models
even less suitable for safety-critical deployment.

• The clear performance difference between synthetic and real-world
datasets observed for selective prediction methods based on feature-
space density is a very interesting direction for future work. If the reasons
for this performance gap can be understood, an uncertainty estimation
method that stays well calibrated across all datasets could potentially be
developed.

• Selective prediction methods based on feature-space density perform
well relative to other methods (as expected based on their state-of-the-art
OOD detection performance), but are also overconfident in many cases.
Only comparing the relative performance of different methods is there-
fore not sufficient. To track if actual progress is being made towards
the ultimate goal of truly reliable uncertainty estimation methods, bench-
marks must also evaluate method performance in an absolute sense.

8 Conclusion
We proposed an extensive benchmark for testing the reliability of regression un-
certainty estimation methods under real-world distribution shifts. The bench-
mark consists of 8 publicly available image-based regression datasets with dif-
ferent types of challenging distribution shifts. We employed our benchmark to
evaluate many of the most common uncertainty estimation methods, as well
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as two state-of-the-art uncertainty scores from OOD detection. We found that
while all methods are well calibratedwhen there is no distribution shift, they be-
come highly overconfident onmany of the benchmark datasets. Methods based
on the OOD uncertainty scores performed well relative to other methods, but
the absolute performance is still far from perfect. This uncovers important lim-
itations of current regression uncertainty estimation methods. Our work thus
serves as a challenge to the research community, to develop methods which ac-
tually produce calibrated prediction intervals across all benchmark datasets. To
that end, future directions include exploring the use of more sophisticated mod-
els for p(x)within selective prediction – hopefully closing the performance gap
between synthetic and real-world datasets – and employing alternative DNN
backbone architectures. We hope that our benchmark will spur more work on
how to develop truly reliable regression uncertainty estimation methods.
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Appendix

A Dataset Details
More detailed descriptions of the 12 datasets from Section 3.1 are provided
below.

Cells Given a synthetic fluorescencemicroscopy image x, the task is to predict
the number of cells y in the image. We utilize the Cell-200 dataset from [48,
49], consisting of 200 000 grayscale images of size 64×64. We randomly draw
10 000 train images, 2 000 val images and 10 000 test images. Thus, there is no
distribution shift between train/val and test. We therefore use this as a baseline
dataset.

Cells-Tails We create a variant of Cells with a clear distribution shift between
train/val and test. For the 10 000 train images and 2 000 val images, the regres-
sion targets y are limited to the range ]50, 150]. For the 10 000 test images, the
targets instead lie in the full original range [1, 200].

Cells-Gap Another variant of Cells with a clear distribution shift between
train/val and test. For the 10 000 train images and 2 000 val images, the regres-
sion targets y are limited to [1, 50[∪]150, 200]. For the 10 000 test images, the
targets instead lie in the full original range [1, 200].

ChairAngle Given a synthetic image x of a rendered chair model, the task is
to predict the yaw angle y of the chair. We utilize the RC-49 dataset from [48,
49], which contains 64×64 RGB images of different chair models rendered at
899 yaw angles ranging from 0.1◦ to 89.9◦, with step size 0.1◦. We randomly
split their training set and obtain 17 640 train images and 4 410 val images.
By sub-sampling their test set we also get 11 225 test images. There is no
obvious distribution shift between train/val and test, and we therefore use this
as a second baseline dataset.

ChairAngle-Tails We create a variant of ChairAngle with a clear distribution
shift between train/val and test. For train and val, we limit the regression tar-
gets y to the range ]15, 75[. For test, the targets instead lie in the full original
range ]0, 90[. We obtain 11 760 train images, 2 940 val images and 11 225 test
images.

ChairAngle-Gap Another variant ofChairAnglewith a clear distribution shift
between train/val and test. For the 11 760 train images and 2 940 val images,
the regression targets y are limited to ]0, 30[∪]60, 90[. For the 11 225 test im-
ages, the targets instead lie in the full original range ]0, 90[.

AssetWealth Given a satellite image x (8 image channels), the task is to pre-
dict the asset wealth index y of the region. We utilize the PovertyMap-Wilds
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dataset [16], which is a variant of the dataset collected by [50]. We use the
training, validation-ID and test-OOD subsets of the data, giving us 9 797 train
images, 1 000 val images and 3 963 test images. We resize the images from
size 224 × 224 to 64 × 64. Train/val and test contain satellite images from
disjoint sets of African countries, creating a distribution shift.

VentricularVolume Given an echocardiogram image x of a human heart, the
task is to predict the volume y of the left ventricle. We utilize the EchoNet-
Dynamic dataset by [51], which contains 10 030 echocardiogram videos. Each
video captures a complete cardiac cycle and is labeled with measurements of
the left ventricular volume at two separate time points, representing end-systole
(at the end of contraction - smaller volume) and end-diastole (just before con-
traction - larger volume). For each video, we extract just one of these volume
measurements along with the corresponding video frame. To create a clear
distribution shift between train/val and test, we select the end systolic volume
(smaller volume) for train and val, but the end diastolic volume (larger vol-
ume) for test. We utilize the provided dataset splits, giving us 7 460 train im-
ages, 1 288 val images and 1 276 test images. We resize the images from size
112× 112 to 64× 64.

BrainTumourPixels Given an image slice x of a brainMRI scan, the task is to
predict the number of pixels y in the image which are labeled as brain tumour.
We utilize the brain tumour dataset of the medical segmentation decathlon [52,
53], which is a subset of the data used in the 2016 and 2017 BraTS challenges
[54, 55, 56]. The dataset contains 484 brain MRI scans with corresponding
tumour segmentationmasks. We split these scans 80%/20%/20% into train, val
and test sets. The scans are 3D volumes of size 240× 240× 155. We convert
each scan into 155 image slices of size 240×240, and create a regression target
for each image by counting the number of labeled brain tumour pixels. We then
also remove all images which contain no tumour pixels. The original image
slices have 4 channels (FLAIR, T1w, T1gd, T2w), but we only use the first
three and convert the slices into standard RGB images. This gives us 20 614
train images, 6 116 val images and 6 252 test images. We also resize the images
from size 240× 240 to 64× 64.

SkinLesionPixels Given a dermatoscopic image x of a pigmented skin le-
sion, the task is to predict the number of pixels y in the image which are la-
beled as lesion. We utilize the HAM10000 dataset by [57], which contains
10 015 dermatoscopic images with corresponding skin lesion segmentation
masks. HAM10000 consists of four different sub-datasets, three of which
(ViDIR Legacy, ViDIR Current and ViDIR MoleMax) were collected in Aus-
tria, while the fourth sub-dataset (Rosendahl) was collected in Australia. To
create a clear distribution shift between train/val and test, we use the Australian
sub-dataset (Rosendahl) as our test set. After randomly splitting the remaining
images 85%/15% into train and val sets, we obtain 6 592 train images, 1 164
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val images and 2 259 test images. We then create a regression target for each
image by counting the number of labeled skin lesion pixels. We also resize the
images from size 450× 600 to 64× 64.

HistologyNucleiPixels Given an H&E stained histology image x, the task
is to predict the number of pixels y in the image which are labeled as nuclei.
We utilize the CoNSeP dataset by [58], along with the pre-processed versions
they provide of the Kumar [59] and TNBC [60] datasets. The datasets contain
large H&E stained image tiles (of size 1 000 × 1 000 or 512 × 512) at 40×
objective magnification, with corresponding nuclear segmentation masks. The
three datasets were collected at different hospitals/institutions, with differing
procedures for specimen preservation and staining. By using CoNSeP and
Kumar for train/val and TNBC for test, we thus obtain a clear distribution shift.
From the large image tiles, we extract 64 × 64 patches via regular gridding,
and create a regression target for each image patch by counting the number of
labeled nuclei pixels. We then also remove all images which contain no nuclei
pixels. In the end, we obtain 10 808 train images, 2 702 val images and 2 267
test images.

AerialBuildingPixels Given an aerial image x, the task is to predict the num-
ber of pixels y in the image which are labeled as building. We utilize the
Inria aerial image labeling dataset [61], which contains 180 large aerial im-
ages with corresponding building segmentation masks. The images are of size
5 000×5 000, and are captured at five different geographical locations. We use
the images from two densely populated American cities (Austin and Chicago)
for train/val, and the images from amore rural European area (West Tyrol, Aus-
tria) for test, thus obtaining a clear distribution shift. We first resize the images
to size 1 000×1 000, and then extract 64×64 patches via regular gridding. We
also create a regression target for each image patch by counting the number of
labeled building pixels. After removal of all images which contain no building
pixels, we finally obtain 11 184 train images, 2 797 val images and 3 890 test
images.

The additional variants of Cells and ChairAngle in Figure 4 are specified as
follows. Cells: no difference in regression target range between train/val and
test. Cells-Tails: target range ]50, 150] for train/val, [1, 200] for test. We cre-
ate three versions with intermediate target ranges (1: [37.5, 163.5], 2: [25, 176],
3: [12.5, 188.5]) for test. ChairAngle: no difference in target range between
train/val and test. ChairAngle-Gap: target range ]0, 30[∪]60, 90[ for train/val,
]0, 90[ for test. We create three versions with intermediate target ranges (1:
]0, 33.75[∪]56.25, 90[, 2: ]0, 37.5[∪]52.5, 90[, 3: ]0, 41.25[∪]48.75, 90[) for
test.
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B Additional Results & Method Variations
Please note that the results in Table A1 - Table A42 not are rounded/truncated
to only significant digits.

To ensure that the test coverage results do not depend on our specific choice of
studying 90% prediction intervals (α = 0.1), we repeat most of the evaluation
for two alternative miscoverage rates α. Specifically, we redo the evaluation
of 6/10 methods on 9/12 datasets with 80% (α = 0.2) and 95% (α = 0.05)
prediction intervals. The results for 80% prediction intervals are given in Fig-
ure A7 - Figure A10 and Table A13 - Table A21, while the results for 95%
prediction intervals are given in Figure A11 - Figure A14 and Table A22 - Ta-
ble A30. We observe very similar trends overall. For example, all methods still
have almost perfectly calibrated prediction intervals on Cells and ChairAngle,
i.e. they all obtain a test coverage very close to 80%/95%, but only Gaussian
+ Selective GMM remains well-calibrated on Cells-Tails and ChairAngle-Gap.
With the exception of BrainTumourPixels, all methods are also significantly
overconfident on all the real-world datasets.

Figure A15 shows test coverage results for the five common regression un-
certainty estimation methods on the AerialBuildingPixels dataset, and on two
versions with different test sets. For all three datasets, train/val contains im-
ages from Austin and Chicago. For AerialBuildingPixels, test contains images
from West Tyrol, Austria. For AerialBuildingPixels-Kitsap, test instead con-
tains images from Kitsap County, WA. For AerialBuildingPixels-Vienna, test
contains images from Vienna, Austria. Intuitively, the distribution shift be-
tween train/val and test could potentially be smaller for AerialBuildingPixels-
Kitsap and AerialBuildingPixels-Vienna than for the original AerialBuilding-
Pixels, but we observe no clear trends in Figure A15.

Figure A16 & A17 present a study in which we aim to relate the test coverage
performance to a quantitative measure of distribution shift (“distance” between
the distributions of train/val and test), complementing our qualitative discus-
sion in the Performance Differences among Real-World Datasets are Mostly
Logical paragraph of Section 7. How to quantify the level of distribution shift
in real-world datasets is however far from obvious, see e.g. Appendix E.1 in
[82]. We here explore if the difference in regression accuracy (MAE) on val
and test can be adopted as such a measure, extending the approach by [82]
to our regression setting. We compute the average test coverage error for the
five common regression uncertainty estimation methods, whereas the val/test
MAE is for the Conformal Predictionmethod (standard direct regression mod-
els). The results for the six synthetic datasets are presented in Figure A16, and
for the six real-world datasets in Figure A17. We observe that, in general, a
larger distribution shift measure does indeed seem to correspond to worse test
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coverage performance. Among the 12 datasets, HistologyNucleiPixels is the
only one that quite clearly breaks this general trend.

Apart from the main comparison of the 10 methods specified in Section 4, we
also evaluate a few method variations. The results for these experiments are
provided in Table A31 - Table A42. For Gaussian + Selective GMM, we vary
the number of GMM mixture components from the standard k = 4 to k = 2
and k = 8, but observe no particularly consistent or significant trends in the
results. Similarly, we vary the number of neighbors from the standard k = 10
to k = 5 and k = 20 for Gaussian + Selective kNN, but observe no clear
trends here either. For Gaussian + Selective kNN, we also explore replacing
the cosine similarity distance metric with L2 distance, again obtaining very
similar results. Following [83], we finally add spectral normalization [84] for
further feature-space regularization, but observe no significant improvements
for Gaussian + Selective GMM.
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Figure A1: Performance comparison of the five common regression uncertainty esti-
mation methods on the six real-world datasets, in terms of average test coverage error
and average val MAE rank (the five methods are ranked 1 - 5 in terms of val MAE on
each dataset, and then the average rank is computed). Ensemble and Gaussian Ensem-
ble achieve the best performance.

VII-35



Paper VII – How Reliable is Your Regression Model’s Uncertainty?

1 2 3 4 5
0.1

0.11

0.12

0.13

0.14

Average val Interval Length Rank (↓)

Av
er
ag
e
te
st
C
ov
er
ag
e
Er
ro
r(
↓)

Conformal Prediction Ensemble Gaussian
Gaussian Ensemble Quantile Regression

Figure A2: Performance comparison of the five common regression uncertainty esti-
mation methods on the six real-world datasets, in terms of average test coverage error
and average val interval length rank (the five methods are ranked 1 - 5 in terms of val
interval length on each dataset, and then the average rank is computed). Ensemble and
Gaussian Ensemble achieve the best performance.
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Figure A3: Performance comparison of the five common regression uncertainty esti-
mation methods on the six real-world datasets, in terms of average val interval length
rank and average val MAE rank. Ensemble and Gaussian Ensemble achieve the best
performance.
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Figure A4: Results for the two selective prediction methods based on Gaussian En-
semble, on the six synthetic datasets.

te
st
C
ov
er
ag
e

AssetWealth Ventricular
Volume

BrainTumour
Pixels

SkinLesion
Pixels

Histology
NucleiPixels

AerialBuilding
Pixels

0.5

0.6

0.7

0.8

1

0.9

Pr
ed
ic
tio

n
R
at
e
(↑
)

AssetWealth Ventricular
Volume

BrainTumour
Pixels

SkinLesion
Pixels

Histology
NucleiPixels

AerialBuilding
Pixels

0

0.2

0.4

0.6

0.8

1

Gaussian Ensemble Gaussian Ensemble + Selective GMM
Gaussian Ensemble + Selective Ensemble Var

Figure A5: Results for the two selective prediction methods based on Gaussian En-
semble, on the real-world datasets.
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Figure A6: Performance comparison of the selective prediction methods across all
12 datasets, in terms of average test coverage error and test prediction rate. Gaussian
Ensemble + Selective GMM achieves the best coverage error, but also has the lowest
prediction rate. For these five methods, each improvement in terms of coverage error
also corresponds to a decrease in prediction rate.
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Figure A7: Miscoverage rate α = 0.2: Results in terms of test coverage for four of
the common regression uncertainty estimation methods (Conformal Prediction, Gaus-
sian, Gaussian Ensemble, Quantile Regression), on four of the synthetic datasets. See
Table A13 - Table A16 for other metrics.
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Figure A8: Miscoverage rate α = 0.2: Results in terms of test coverage for four of the
common regression uncertainty estimation methods (Conformal Prediction, Gaussian,
Gaussian Ensemble, Quantile Regression), on five of the real-world datasets. See
Table A17 - Table A21 for other metrics.
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Figure A9: Miscoverage rate α = 0.2: Results for two of the selective prediction
methods, on four of the synthetic datasets. See Table A13 - Table A16 for othermetrics.
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Figure A10: Miscoverage rate α = 0.2: Results for two of the selective prediction
methods, on five of the real-world datasets. See Table A17 - Table A21 for other
metrics.
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Figure A11: Miscoverage rate α = 0.05: Results in terms of test coverage for four of
the common regression uncertainty estimation methods (Conformal Prediction, Gaus-
sian, Gaussian Ensemble, Quantile Regression), on four of the synthetic datasets. See
Table A22 - Table A25 for other metrics.
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Figure A12: Miscoverage rate α = 0.05: Results in terms of test coverage for four of
the common regression uncertainty estimation methods (Conformal Prediction, Gaus-
sian, Gaussian Ensemble, Quantile Regression), on five of the real-world datasets. See
Table A26 - Table A30 for other metrics.
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Figure A13: Miscoverage rate α = 0.05: Results for two of the selective prediction
methods, on four of the synthetic datasets. See Table A22 - Table A25 for othermetrics.
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Figure A14: Miscoverage rate α = 0.05: Results for two of the selective prediction
methods, on five of the real-world datasets. See Table A26 - Table A30 for other
metrics.
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Figure A15: Results for the five common regression uncertainty estimation meth-
ods (Conformal Prediction, Ensemble, Gaussian, Gaussian Ensemble, Quantile Re-
gression) on the AerialBuildingPixels dataset, and on two versions with different
test sets. For all three datasets, train/val contains images from Austin and Chicago.
For AerialBuildingPixels, test contains images from West Tyrol, Austria. For
AerialBuildingPixels-Kitsap, test instead contains images from Kitsap County, WA.
For AerialBuildingPixels-Vienna, test contains images from Vienna, Austria.
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Figure A16: Using the difference in regression accuracy (MAE) on val and test as a
quantitative measure of distribution shift in each dataset (inspired by [82], extended to
our regression setting), and comparing this to the test coverage performance. Results
for the six synthetic datasets. In general, a larger distribution shift measure corresponds
to worse test coverage performance.
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Figure A17: Exactly the same comparison as in Figure A16, but for the six real-world
datasets. A larger distribution shift measure generally corresponds to worse test cov-
erage performance also in this case. The HistologyNucleiPixels dataset is somewhat
of an outlier.
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Table A1: Complete results on the Cells dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Conformal Prediction 4.03121± 2.78375 18.8216± 11.8302 0.9117± 0.00275173 1.0
Ensemble 2.22525± 0.471309 12.2881± 2.78795 0.8994± 0.00689986 1.0
Gaussian 3.61704± 1.13624 14.5492± 4.44927 0.90286± 0.00594629 1.0
Gaussian Ensemble 2.78757± 1.16951 17.1285± 4.33367 0.90062± 0.0027571 1.0
Quantile Regression 3.70405± 0.81647 13.8023± 2.19085 0.90486± 0.006771 1.0

Gaussian + Selective GMM 3.61704± 1.13624 14.5492± 4.44927 0.905241± 0.00448315 0.95216± 0.00290558
Gaussian + Selective kNN 3.61704± 1.13624 14.5492± 4.44927 0.900069± 0.00677637 0.94656± 0.00470472
Gaussian + Selective Variance 3.61704± 1.13624 14.5492± 4.44927 0.904839± 0.00795449 0.95712± 0.00200938
Gaussian Ens + Selec GMM 2.78757± 1.16951 17.1285± 4.33367 0.899999± 0.00311328 0.95066± 0.0023105
Gaussian Ens + Selec Ens Var 2.78757± 1.16951 17.1285± 4.33367 0.896465± 0.0015705 0.95156± 0.00215277

Table A2: Complete results on the Cells-Tails dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Conformal Prediction 3.56733± 1.0818 14.2128± 4.23582 0.55356± 0.0299096 1.0
Ensemble 1.83461± 0.178937 9.8697± 1.6672 0.50078± 0.007608 1.0
Gaussian 4.05446± 1.33153 15.4321± 4.98796 0.54402± 0.0347525 1.0
Gaussian Ensemble 2.40691± 0.580524 10.9696± 1.70051 0.5874± 0.0479263 1.0
Quantile Regression 3.32571± 1.24578 13.0848± 3.54239 0.52222± 0.0284102 1.0

Gaussian + Selective GMM 4.05446± 1.33153 15.4321± 4.98796 0.889825± 0.0193021 0.53654± 0.0101012
Gaussian + Selective kNN 4.05446± 1.33153 15.4321± 4.98796 0.859179± 0.0255173 0.56692± 0.0127107
Gaussian + Selective Variance 4.05446± 1.33153 15.4321± 4.98796 0.687475± 0.0659807 0.6914± 0.0651196
Gaussian Ens + Selec GMM 2.40691± 0.580524 10.9696± 1.70051 0.877068± 0.0222502 0.53604± 0.0125903
Gaussian Ens + Selec Ens Var 2.40691± 0.580524 10.9696± 1.70051 0.660212± 0.0325832 0.74512± 0.0438128

Table A3: Complete results on the Cells-Gap dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Conformal Prediction 3.67702± 1.33587 17.1152± 6.49211 0.64002± 0.0620287 1.0
Ensemble 2.7261± 0.705274 13.4061± 2.40513 0.6771± 0.0544788 1.0
Gaussian 3.53089± 1.0619 15.6396± 6.23458 0.66028± 0.114703 1.0
Gaussian Ensemble 3.46118± 0.95429 18.707± 4.13287 0.7066± 0.0317638 1.0
Quantile Regression 4.75328± 1.73499 18.108± 4.21716 0.64488± 0.12875 1.0

Gaussian + Selective GMM 3.53089± 1.0619 15.6396± 6.23458 0.890569± 0.00953089 0.49372± 0.0025926
Gaussian + Selective kNN 3.53089± 1.0619 15.6396± 6.23458 0.874032± 0.0432364 0.53646± 0.0139864
Gaussian + Selective Variance 3.53089± 1.0619 15.6396± 6.23458 0.652766± 0.117192 0.9748± 0.000940213
Gaussian Ens + Selec GMM 3.46118± 0.95429 18.707± 4.13287 0.896848± 0.0127879 0.49278± 0.00192914
Gaussian Ens + Selec Ens Var 3.46118± 0.95429 18.707± 4.13287 0.68326± 0.0299799 0.9147± 0.0182427

Table A4: Complete results on the ChairAngle dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Conformal Prediction 0.289127± 0.081643 1.08752± 0.202247 0.905265± 0.00339915 1.0
Ensemble 0.189858± 0.0548452 0.788401± 0.137465 0.909915± 0.00399101 1.0
Gaussian 0.376692± 0.171928 1.37757± 0.382191 0.901577± 0.00308472 1.0
Gaussian Ensemble 0.361834± 0.165348 1.2044± 0.442422 0.910414± 0.00316257 1.0
Quantile Regression 0.851253± 0.544717 3.19741± 1.9751 0.906209± 0.00204038 1.0

Gaussian + Selective GMM 0.376692± 0.171928 1.37757± 0.382191 0.902482± 0.00436054 0.972739± 0.00191733
Gaussian + Selective kNN 0.376692± 0.171928 1.37757± 0.382191 0.90222± 0.00459694 0.975465± 0.00201785
Gaussian + Selective Variance 0.376692± 0.171928 1.37757± 0.382191 0.904805± 0.00765098 0.961782± 0.0193133
Gaussian Ens + Selec GMM 0.361834± 0.165348 1.2044± 0.442422 0.9093± 0.00297263 0.969033± 0.000940447
Gaussian Ens + Selec Ens Var 0.361834± 0.165348 1.2044± 0.442422 0.905905± 0.00336481 0.951359± 0.00453556

Table A5: Complete results on the ChairAngle-Tails dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Conformal Prediction 0.358162± 0.168257 1.31102± 0.531401 0.615804± 0.00527695 1.0
Ensemble 0.21931± 0.0596705 1.04074± 0.245846 0.611706± 0.00345611 1.0
Gaussian 0.241214± 0.091736 1.09417± 0.382907 0.622592± 0.00714065 1.0
Gaussian Ensemble 0.13365± 0.0189933 0.769172± 0.0814039 0.617016± 0.0063698 1.0
Quantile Regression 0.820934± 0.653268 2.9815± 2.15473 0.660953± 0.0379624 1.0

Gaussian + Selective GMM 0.241214± 0.091736 1.09417± 0.382907 0.901946± 0.00382993 0.655448± 0.001058
Gaussian + Selective kNN 0.241214± 0.091736 1.09417± 0.382907 0.860311± 0.00617031 0.703038± 0.00691227
Gaussian + Selective Variance 0.241214± 0.091736 1.09417± 0.382907 0.647559± 0.0360179 0.924383± 0.0751205
Gaussian Ens + Selec GMM 0.13365± 0.0189933 0.769172± 0.0814039 0.904807± 0.00394199 0.651314± 0.0013893
Gaussian Ens + Selec Ens Var 0.13365± 0.0189933 0.769172± 0.0814039 0.751845± 0.0131765 0.772401± 0.00878839
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Table A6: Complete results on the ChairAngle-Gap dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Conformal Prediction 0.35034± 0.161819 1.35± 0.547089 0.659546± 0.00916108 1.0
Ensemble 0.22898± 0.0853825 1.1222± 0.174147 0.749951± 0.0155327 1.0
Gaussian 0.454516± 0.280174 2.09212± 0.933756 0.69363± 0.0345876 1.0
Gaussian Ensemble 0.226352± 0.0677413 1.30588± 0.136235 0.731065± 0.0126216 1.0
Quantile Regression 0.639151± 0.296536 3.29137± 1.53269 0.695697± 0.0413613 1.0

Gaussian + Selective GMM 0.454516± 0.280174 2.09212± 0.933756 0.91215± 0.00604745 0.649372± 0.00334919
Gaussian + Selective kNN 0.454516± 0.280174 2.09212± 0.933756 0.911574± 0.00376608 0.673764± 0.0113432
Gaussian + Selective Variance 0.454516± 0.280174 2.09212± 0.933756 0.690436± 0.0366025 0.981292± 0.0152406
Gaussian Ens + Selec GMM 0.226352± 0.0677413 1.30588± 0.136235 0.905039± 0.00229837 0.648624± 0.00094348
Gaussian Ens + Selec Ens Var 0.226352± 0.0677413 1.30588± 0.136235 0.794531± 0.014876 0.7711± 0.0191172

Table A7: Complete results on the AssetWealth dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Conformal Prediction 0.346532± 0.00578306 1.5838± 0.0318086 0.87136± 0.0090944 1.0
Ensemble 0.320002± 0.00264202 1.45568± 0.0129312 0.87348± 0.00598963 1.0
Gaussian 0.367501± 0.0416437 1.597± 0.207599 0.844966± 0.0456831 1.0
Gaussian Ensemble 0.3295± 0.00783906 1.42071± 0.0485437 0.866162± 0.00711672 1.0
Quantile Regression 0.404279± 0.0683226 1.58957± 0.161689 0.823921± 0.0313343 1.0

Gaussian + Selective GMM 0.367501± 0.0416437 1.597± 0.207599 0.850824± 0.047533 0.93838± 0.0170443
Gaussian + Selective kNN 0.367501± 0.0416437 1.597± 0.207599 0.852107± 0.0474734 0.933586± 0.0203541
Gaussian + Selective Variance 0.367501± 0.0416437 1.597± 0.207599 0.846981± 0.0430247 0.926874± 0.0159098
Gaussian Ens + Selec GMM 0.3295± 0.00783906 1.42071± 0.0485437 0.868444± 0.00727312 0.937371± 0.0138213
Gaussian Ens + Selec Ens Var 0.3295± 0.00783906 1.42071± 0.0485437 0.85047± 0.00397082 0.868282± 0.0299149

Table A8: Complete results on the VentricularVolume dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Conformal Prediction 11.2471± 0.201399 47.4505± 1.556 0.603135± 0.0125842 1.0
Ensemble 10.2476± 0.113707 41.8445± 0.750822 0.707367± 0.00877743 1.0
Gaussian 12.7238± 1.52197 51.566± 3.52739 0.730878± 0.0619045 1.0
Gaussian Ensemble 10.1141± 0.180661 39.9817± 1.91308 0.795768± 0.0231243 1.0
Quantile Regression 12.4944± 0.676265 49.0448± 3.33314 0.710972± 0.045171 1.0

Gaussian + Selective GMM 12.7238± 1.52197 51.566± 3.52739 0.752046± 0.0529087 0.707994± 0.0208741
Gaussian + Selective kNN 12.7238± 1.52197 51.566± 3.52739 0.735105± 0.0612413 0.911599± 0.0447475
Gaussian + Selective Variance 12.7238± 1.52197 51.566± 3.52739 0.747868± 0.0569984 0.691693± 0.0341016
Gaussian Ens + Selec GMM 10.1141± 0.180661 39.9817± 1.91308 0.798094± 0.0166674 0.646865± 0.0366201
Gaussian Ens + Selec Ens Var 10.1141± 0.180661 39.9817± 1.91308 0.763412± 0.0286772 0.686207± 0.0431835

Table A9: Complete results on the BrainTumourPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Conformal Prediction 21.3163± 0.45997 93.7169± 2.99061 0.885925± 0.00395743 1.0
Ensemble 21.1133± 0.210209 90.3825± 0.825858 0.878183± 0.00318872 1.0
Gaussian 21.0625± 0.358012 93.6284± 2.29916 0.873544± 0.00871896 1.0
Gaussian Ensemble 20.5336± 0.211421 87.7414± 0.818979 0.868426± 0.00328047 1.0
Quantile Regression 22.0348± 0.697606 94.3249± 3.07265 0.879079± 0.00380396 1.0

Gaussian + Selective GMM 21.0625± 0.358012 93.6284± 2.29916 0.883515± 0.0138279 0.973576± 0.0187252
Gaussian + Selective kNN 21.0625± 0.358012 93.6284± 2.29916 0.891264± 0.00734602 0.947185± 0.0178434
Gaussian + Selective Variance 21.0625± 0.358012 93.6284± 2.29916 0.878666± 0.00735197 0.978791± 0.00694672
Gaussian Ens + Selec GMM 20.5336± 0.211421 87.7414± 0.818979 0.873824± 0.00466519 0.985349± 0.00461984
Gaussian Ens + Selec Ens Var 20.5336± 0.211421 87.7414± 0.818979 0.877211± 0.00302057 0.975368± 0.00323397

Table A10: Complete results on the SkinLesionPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Conformal Prediction 107.514± 1.87464 492.922± 14.1865 0.708012± 0.00917777 1.0
Ensemble 99.3156± 0.997867 353.842± 4.73577 0.742098± 0.00852236 1.0
Gaussian 105.417± 1.15178 535.139± 215.446 0.797255± 0.0270734 1.0
Gaussian Ensemble 100.639± 0.464183 472.14± 85.2654 0.822931± 0.0134328 1.0
Quantile Regression 113.076± 3.20875 405.904± 4.75158 0.719788± 0.0213826 1.0

Gaussian + Selective GMM 105.417± 1.15178 535.139± 215.446 0.821515± 0.0137705 0.849579± 0.0206181
Gaussian + Selective kNN 105.417± 1.15178 535.139± 215.446 0.813027± 0.0306586 0.927047± 0.00830718
Gaussian + Selective Variance 105.417± 1.15178 535.139± 215.446 0.799821± 0.0150855 0.77946± 0.059169
Gaussian Ens + Selec GMM 100.639± 0.464183 472.14± 85.2654 0.826921± 0.00719649 0.839132± 0.0108815
Gaussian Ens + Selec Ens Var 100.639± 0.464183 472.14± 85.2654 0.819129± 0.00910128 0.782116± 0.0109776
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Table A11: Complete results on the HistologyNucleiPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Conformal Prediction 217.887± 3.71766 993.665± 18.3282 0.841288± 0.0128314 1.0
Ensemble 197.078± 1.99489 853.361± 14.1904 0.812704± 0.00664074 1.0
Gaussian 211.795± 10.0239 1211.83± 396.946 0.588796± 0.0912794 1.0
Gaussian Ensemble 196.785± 2.14454 1108.53± 145.034 0.54936± 0.05995 1.0
Quantile Regression 227.895± 9.37415 914.909± 45.995 0.684076± 0.0428704 1.0

Gaussian + Selective GMM 211.795± 10.0239 1211.83± 396.946 0.59554± 0.0956742 0.90569± 0.0453555
Gaussian + Selective kNN 211.795± 10.0239 1211.83± 396.946 0.608929± 0.0805954 0.846228± 0.0482832
Gaussian + Selective Variance 211.795± 10.0239 1211.83± 396.946 0.588598± 0.0913593 0.998765± 0.00134954
Gaussian Ens + Selec GMM 196.785± 2.14454 1108.53± 145.034 0.553725± 0.0642274 0.882488± 0.0156395
Gaussian Ens + Selec Ens Var 196.785± 2.14454 1108.53± 145.034 0.555149± 0.0620052 0.954477± 0.0256246

Table A12: Complete results on the AerialBuildingPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Conformal Prediction 235.417± 7.16096 1038.45± 51.5565 0.637584± 0.0691102 1.0
Ensemble 199.206± 2.76543 798.312± 6.80986 0.772494± 0.0227288 1.0
Gaussian 217.877± 1.72493 929.562± 47.6606 0.698766± 0.0662263 1.0
Gaussian Ensemble 208.487± 1.03581 885.349± 27.8584 0.812339± 0.0617386 1.0
Quantile Regression 242.284± 6.0122 909.191± 24.9528 0.763342± 0.0902358 1.0

Gaussian + Selective GMM 217.877± 1.72493 929.562± 47.6606 0.76535± 0.0388677 0.652082± 0.0990489
Gaussian + Selective kNN 217.877± 1.72493 929.562± 47.6606 0.651867± 0.0771154 0.840103± 0.0463989
Gaussian + Selective Variance 217.877± 1.72493 929.562± 47.6606 0.725714± 0.0779575 0.708226± 0.103803
Gaussian Ens + Selec GMM 208.487± 1.03581 885.349± 27.8584 0.847101± 0.038266 0.686787± 0.0278702
Gaussian Ens + Selec Ens Var 208.487± 1.03581 885.349± 27.8584 0.838352± 0.0312236 0.571928± 0.0402727

Table A13: Miscoverage rate α = 0.2: Results on the Cells dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.80) test Prediction Rate (↑)
Conformal Prediction 4.03121± 2.78375 14.042± 10.2791 0.811± 0.0100485 1.0
Gaussian 3.61704± 1.13624 11.544± 3.59513 0.808± 0.00859046 1.0
Gaussian Ensemble 2.78757± 1.16951 13.1298± 3.34997 0.80044± 0.00316582 1.0
Quantile Regression 4.40758± 1.47411 13.3314± 4.39511 0.80152± 0.00667005 1.0

Gaussian + Selective GMM 3.61704± 1.13624 11.544± 3.59513 0.811076± 0.00507358 0.95216± 0.00280043
Gaussian Ens + Selective Ens Var 2.78757± 1.16951 13.1298± 3.34997 0.793124± 0.00576659 0.95156± 0.00215277

Table A14: Miscoverage rate α = 0.2: Results on the Cells-Tails dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.80) test Prediction Rate (↑)
Conformal Prediction 3.56733± 1.0818 11.3841± 3.54242 0.48332± 0.0337429 1.0
Gaussian 4.05446± 1.33153 12.7086± 4.39552 0.47106± 0.0319074 1.0
Gaussian Ensemble 2.40691± 0.580524 8.62187± 1.5177 0.4768± 0.0461347 1.0
Quantile Regression 4.20398± 1.61554 13.1241± 4.61204 0.49358± 0.0341114 1.0

Gaussian + Selective GMM 4.05446± 1.33153 12.7086± 4.39552 0.788228± 0.0239896 0.5364± 0.0100584
Gaussian Ens + Selective Ens Var 2.40691± 0.580524 8.62187± 1.5177 0.567734± 0.0270648 0.74512± 0.0438128

Table A15: Miscoverage rate α = 0.2: Results on the ChairAngle dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.80) test Prediction Rate (↑)
Conformal Prediction 0.289127± 0.081643 0.872808± 0.205426 0.80212± 0.00337798 1.0
Gaussian 0.376692± 0.171928 1.14193± 0.40832 0.806646± 0.00565869 1.0
Gaussian Ensemble 0.361834± 0.165348 1.01037± 0.399644 0.813452± 0.00329742 1.0
Quantile Regression 0.648062± 0.181932 1.87322± 0.428951 0.807127± 0.00380433 1.0

Gaussian + Selective GMM 0.376692± 0.171928 1.14193± 0.40832 0.807801± 0.0066405 0.972829± 0.0019256
Gaussian Ens + Selective Ens Var 0.361834± 0.165348 1.01037± 0.399644 0.804719± 0.00318856 0.951359± 0.00453556

Table A16: Miscoverage rate α = 0.2: Results on the ChairAngle-Gap dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.80) test Prediction Rate (↑)
Conformal Prediction 0.35034± 0.161819 1.09877± 0.497591 0.588472± 0.0119766 1.0
Gaussian 0.454516± 0.280174 1.69802± 0.840083 0.613951± 0.0358797 1.0
Gaussian Ensemble 0.226352± 0.0677413 0.972076± 0.118477 0.6431± 0.0136145 1.0
Quantile Regression 0.692597± 0.269476 2.29958± 0.738934 0.600606± 0.0136385 1.0

Gaussian + Selective GMM 0.454516± 0.280174 1.69802± 0.840083 0.813442± 0.00720691 0.650227± 0.00138861
Gaussian Ens + Selective Ens Var 0.226352± 0.0677413 0.972076± 0.118477 0.701301± 0.0146886 0.7711± 0.0191172
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Table A17: Miscoverage rate α = 0.2: Results on the VentricularVolume dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.80) test Prediction Rate (↑)
Conformal Prediction 11.2471± 0.201399 33.0996± 0.991594 0.457053± 0.00583106 1.0
Gaussian 12.7238± 1.52197 37.3172± 4.91536 0.589342± 0.0793156 1.0
Gaussian Ensemble 10.1141± 0.180661 29.9914± 1.12007 0.678527± 0.0277009 1.0
Quantile Regression 12.5465± 0.941364 35.8073± 1.5139 0.537774± 0.0444887 1.0

Gaussian + Selective GMM 12.7238± 1.52197 37.3172± 4.91536 0.609177± 0.0682058 0.709875± 0.0232873
Gaussian Ens + Selective Ens Var 10.1141± 0.180661 29.9914± 1.12007 0.640078± 0.0277429 0.686207± 0.0431835

Table A18: Miscoverage rate α = 0.2: Results on the BrainTumourPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.80) test Prediction Rate (↑)
Conformal Prediction 21.3163± 0.45997 66.146± 2.75637 0.824632± 0.0128289 1.0
Gaussian 21.0625± 0.358012 64.2423± 1.9975 0.798113± 0.0133438 1.0
Gaussian Ensemble 20.5336± 0.211421 62.5706± 0.713494 0.796961± 0.00658989 1.0
Quantile Regression 21.9545± 0.149787 66.2654± 1.33091 0.807646± 0.0165337 1.0

Gaussian + Selective GMM 21.0625± 0.358012 64.2423± 1.9975 0.809477± 0.0139729 0.973576± 0.0187252
Gaussian Ens + Selective Ens Var 20.5336± 0.211421 62.5706± 0.713494 0.806998± 0.00641546 0.975368± 0.00323397

Table A19: Miscoverage rate α = 0.2: Results on the SkinLesionPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.80) test Prediction Rate (↑)
Conformal Prediction 107.514± 1.87464 275.494± 5.60123 0.553254± 0.0122434 1.0
Gaussian 105.417± 1.15178 395.661± 174.897 0.689951± 0.0406148 1.0
Gaussian Ensemble 100.639± 0.464183 351.961± 70.4308 0.715272± 0.0278757 1.0
Quantile Regression 106.382± 2.70593 251.346± 8.67954 0.590792± 0.0115523 1.0

Gaussian + Selective GMM 105.417± 1.15178 395.661± 174.897 0.708767± 0.0274691 0.849668± 0.0189464
Gaussian Ens + Selective Ens Var 100.639± 0.464183 351.961± 70.4308 0.704273± 0.0198608 0.782116± 0.0109776

Table A20: Miscoverage rate α = 0.2: Results on the HistologyNucleiPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.80) test Prediction Rate (↑)
Conformal Prediction 217.887± 3.71766 688.269± 13.6761 0.744155± 0.0107073 1.0
Gaussian 211.795± 10.0239 902.884± 295.983 0.454345± 0.0986975 1.0
Gaussian Ensemble 196.785± 2.14454 840.287± 113.005 0.412528± 0.0544736 1.0
Quantile Regression 221.136± 9.7918 679.117± 30.6895 0.580503± 0.0463751 1.0

Gaussian + Selective GMM 211.795± 10.0239 902.884± 295.983 0.462248± 0.105935 0.901985± 0.0400294
Gaussian Ens + Selective Ens Var 196.785± 2.14454 840.287± 113.005 0.417977± 0.0572495 0.954477± 0.0256246

Table A21: Miscoverage rate α = 0.2: Results on the AerialBuildingPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.80) test Prediction Rate (↑)
Conformal Prediction 235.417± 7.16096 685.829± 31.3669 0.52437± 0.0610316 1.0
Gaussian 217.877± 1.72493 685.899± 43.1749 0.60129± 0.0717427 1.0
Gaussian Ensemble 208.487± 1.03581 658.243± 27.1206 0.683599± 0.0674139 1.0
Quantile Regression 229.243± 6.21038 662.104± 18.5495 0.635733± 0.0350343 1.0

Gaussian + Selective GMM 217.877± 1.72493 685.899± 43.1749 0.679246± 0.0462652 0.65018± 0.0999173
Gaussian Ens + Selective Ens Var 208.487± 1.03581 658.243± 27.1206 0.743714± 0.0354023 0.571928± 0.0402727

Table A22: Miscoverage rate α = 0.05: Results on the Cells dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.95) test Prediction Rate (↑)
Conformal Prediction 4.03121± 2.78375 22.3973± 12.7194 0.95612± 0.00460235 1.0
Gaussian 3.61704± 1.13624 17.0459± 4.98381 0.95402± 0.00275928 1.0
Gaussian Ensemble 2.78757± 1.16951 20.5445± 5.00176 0.9484± 0.00331843 1.0
Quantile Regression 3.5478± 1.25834 17.8244± 3.57608 0.94858± 0.00565346 1.0

Gaussian + Selective GMM 3.61704± 1.13624 17.0459± 4.98381 0.955558± 0.0032579 0.95212± 0.00276362
Gaussian Ens + Selective Ens Var 2.78757± 1.16951 20.5445± 5.00176 0.946085± 0.00337562 0.95156± 0.00215277

Table A23: Miscoverage rate α = 0.05: Results on the Cells-Tails dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.95) test Prediction Rate (↑)
Conformal Prediction 3.56733± 1.0818 16.3831± 4.80611 0.59048± 0.0307226 1.0
Gaussian 4.05446± 1.33153 17.5443± 5.3978 0.59066± 0.0417946 1.0
Gaussian Ensemble 2.40691± 0.580524 13.1205± 1.81604 0.67218± 0.0308246 1.0
Quantile Regression 3.34375± 0.642763 14.5539± 2.01592 0.5666± 0.0295055 1.0

Gaussian + Selective GMM 4.05446± 1.33153 17.5443± 5.3978 0.941551± 0.0164539 0.53636± 0.0100057
Gaussian Ens + Selective Ens Var 2.40691± 0.580524 13.1205± 1.81604 0.720221± 0.0374625 0.74512± 0.0438128
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Table A24: Miscoverage rate α = 0.05: Results on the ChairAngle dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.95) test Prediction Rate (↑)
Conformal Prediction 0.289127± 0.081643 1.27437± 0.18759 0.953087± 0.000729425 1.0
Gaussian 0.376692± 0.171928 1.59112± 0.367248 0.949381± 0.00143361 1.0
Gaussian Ensemble 0.361834± 0.165348 1.38384± 0.481345 0.95633± 0.0016841 1.0
Quantile Regression 0.888707± 0.472522 4.04185± 1.50356 0.951608± 0.00184683 1.0

Gaussian + Selective GMM 0.376692± 0.171928 1.59112± 0.367248 0.949963± 0.00265095 0.97208± 0.00166628
Gaussian Ens + Selective Ens Var 0.361834± 0.165348 1.38384± 0.481345 0.9541± 0.00167267 0.951359± 0.00453556

Table A25: Miscoverage rate α = 0.05: Results on the ChairAngle-Gap dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.95) test Prediction Rate (↑)
Conformal Prediction 0.35034± 0.161819 1.56264± 0.582954 0.697817± 0.00918537 1.0
Gaussian 0.454516± 0.280174 2.39892± 1.02472 0.733595± 0.0367327 1.0
Gaussian Ensemble 0.226352± 0.0677413 1.59703± 0.159795 0.780615± 0.0141415 1.0
Quantile Regression 1.43807± 0.99796 5.57113± 1.71783 0.759929± 0.034465 1.0

Gaussian + Selective GMM 0.454516± 0.280174 2.39892± 1.02472 0.95774± 0.00281998 0.64882± 0.00276083
Gaussian Ens + Selective Ens Var 0.226352± 0.0677413 1.59703± 0.159795 0.844587± 0.0165508 0.7711± 0.0191172

Table A26: Miscoverage rate α = 0.05: Results on the VentricularVolume dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.95) test Prediction Rate (↑)
Conformal Prediction 11.2471± 0.201399 70.211± 1.37665 0.776176± 0.00853621 1.0
Gaussian 12.7238± 1.52197 67.1562± 6.31002 0.837931± 0.0396691 1.0
Gaussian Ensemble 10.1141± 0.180661 51.9065± 3.94789 0.876646± 0.0140944 1.0
Quantile Regression 12.0793± 0.130032 61.623± 3.04835 0.843574± 0.0243659 1.0

Gaussian + Selective GMM 12.7238± 1.52197 67.1562± 6.31002 0.854302± 0.0279176 0.710188± 0.0225912
Gaussian Ens + Selective Ens Var 10.1141± 0.180661 51.9065± 3.94789 0.855053± 0.0125036 0.686207± 0.0431835

Table A27: Miscoverage rate α = 0.05: Results on the BrainTumourPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.95) test Prediction Rate (↑)
Conformal Prediction 21.3163± 0.45997 123.719± 2.07495 0.921113± 0.00123648 1.0
Gaussian 21.0625± 0.358012 123.587± 3.3168 0.910141± 0.00537523 1.0
Gaussian Ensemble 20.5336± 0.211421 113.592± 1.37398 0.905182± 0.00359141 1.0
Quantile Regression 24.6897± 2.49388 126.788± 7.00165 0.915995± 0.00956349 1.0

Gaussian + Selective GMM 21.0625± 0.358012 123.587± 3.3168 0.919455± 0.0105219 0.973672± 0.0186442
Gaussian Ens + Selective Ens Var 20.5336± 0.211421 113.592± 1.37398 0.910995± 0.00267557 0.975368± 0.00323397

Table A28: Miscoverage rate α = 0.05: Results on the SkinLesionPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.95) test Prediction Rate (↑)
Conformal Prediction 107.514± 1.87464 845.109± 31.2572 0.822753± 0.0104666 1.0
Gaussian 105.417± 1.15178 691.768± 232.071 0.866844± 0.0166304 1.0
Gaussian Ensemble 100.639± 0.464183 582.719± 95.3488 0.881009± 0.00686587 1.0
Quantile Regression 112.07± 5.13986 627.938± 68.3371 0.827977± 0.017595 1.0

Gaussian + Selective GMM 105.417± 1.15178 691.768± 232.071 0.889891± 0.00940058 0.849225± 0.0194809
Gaussian Ens + Selective Ens Var 100.639± 0.464183 582.719± 95.3488 0.881749± 0.00534917 0.782116± 0.0109776

Table A29: Miscoverage rateα = 0.05: Results on theHistologyNucleiPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.95) test Prediction Rate (↑)
Conformal Prediction 217.887± 3.71766 1282.78± 25.9915 0.896603± 0.0113207 1.0
Gaussian 211.795± 10.0239 1491.62± 472.378 0.680018± 0.0860417 1.0
Gaussian Ensemble 196.785± 2.14454 1358.12± 174.189 0.66749± 0.0522544 1.0
Quantile Regression 251.562± 12.244 1191.96± 65.3122 0.754566± 0.0379023 1.0

Gaussian + Selective GMM 211.795± 10.0239 1491.62± 472.378 0.68897± 0.0895173 0.901191± 0.0405698
Gaussian Ens + Selective Ens Var 196.785± 2.14454 1358.12± 174.189 0.673945± 0.0533738 0.954477± 0.0256246

Table A30: Miscoverage rate α = 0.05: Results on the AerialBuildingPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.95) test Prediction Rate (↑)
Conformal Prediction 235.417± 7.16096 1474.93± 53.6301 0.731414± 0.070291 1.0
Gaussian 217.877± 1.72493 1181.55± 41.5859 0.773522± 0.0548329 1.0
Gaussian Ensemble 208.487± 1.03581 1108.87± 21.3551 0.88874± 0.0490213 1.0
Quantile Regression 294.181± 19.9268 1281.37± 51.1001 0.888175± 0.028968 1.0

Gaussian + Selective GMM 217.877± 1.72493 1181.55± 41.5859 0.831501± 0.0374173 0.650797± 0.0987431
Gaussian Ens + Selective Ens Var 208.487± 1.03581 1108.87± 21.3551 0.899838± 0.0263409 0.571928± 0.0402727
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Table A31: Method variation results on the Cells dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Gaussian + Selective GMM 3.61704± 1.13624 14.5492± 4.44927 0.905241± 0.00448315 0.95216± 0.00290558
Gaussian + Selective GMM, k = 2 3.61704± 1.13624 14.5492± 4.44927 0.9044± 0.00481955 0.952± 0.00270259
Gaussian + Selective GMM, k = 8 3.61704± 1.13624 14.5492± 4.44927 0.904928± 0.00469093 0.9528± 0.00331662
Gaussian + Sel. GMM, Spec. Norm 4.80289± 1.89759 18.5596± 9.13391 0.908± 0.00703097 0.95118± 0.00220672
Gaussian + Selective kNN 3.61704± 1.13624 14.5492± 4.44927 0.900069± 0.00677637 0.94656± 0.00470472
Gaussian + Selective kNN, k = 5 3.61704± 1.13624 14.5492± 4.44927 0.900146± 0.00671325 0.94736± 0.00395049
Gaussian + Selective kNN, k = 20 3.61704± 1.13624 14.5492± 4.44927 0.900048± 0.00691667 0.94624± 0.00248564
Gaussian + Selective kNN, L2 3.61704± 1.13624 14.5492± 4.44927 0.906295± 0.00579854 0.95166± 0.00422734

Table A32: Method variation results on the Cells-Tails dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Gaussian + Selective GMM 4.05446± 1.33153 15.4321± 4.98796 0.889825± 0.0193021 0.53654± 0.0101012
Gaussian + Selective GMM, k = 2 4.05446± 1.33153 15.4321± 4.98796 0.891933± 0.0175265 0.525± 0.00829409
Gaussian + Selective GMM, k = 8 4.05446± 1.33153 15.4321± 4.98796 0.893648± 0.0182098 0.53516± 0.00975635
Gaussian + Sel. GMM, Spec. Norm 4.91114± 2.46961 17.3945± 7.3177 0.881351± 0.021587 0.5331± 0.0157885
Gaussian + Selective kNN 4.05446± 1.33153 15.4321± 4.98796 0.859179± 0.0255173 0.56692± 0.0127107
Gaussian + Selective kNN, k = 5 4.05446± 1.33153 15.4321± 4.98796 0.855387± 0.0261636 0.57206± 0.0129226
Gaussian + Selective kNN, k = 20 4.05446± 1.33153 15.4321± 4.98796 0.862429± 0.0264602 0.56236± 0.0122017
Gaussian + Selective kNN, L2 4.05446± 1.33153 15.4321± 4.98796 0.898932± 0.00921808 0.51486± 0.00474662

Table A33: Method variation results on the Cells-Gap dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Gaussian + Selective GMM 3.53089± 1.0619 15.6396± 6.23458 0.890569± 0.00953089 0.49372± 0.0025926
Gaussian + Selective GMM, k = 2 3.53089± 1.0619 15.6396± 6.23458 0.892265± 0.00867262 0.48902± 0.00420828
Gaussian + Selective GMM, k = 8 3.53089± 1.0619 15.6396± 6.23458 0.88967± 0.0111239 0.50196± 0.00492041
Gaussian + Sel. GMM, Spec. Norm 2.81679± 0.42988 12.194± 1.10907 0.883644± 0.0167566 0.4991± 0.00761236
Gaussian + Selective kNN 3.53089± 1.0619 15.6396± 6.23458 0.874032± 0.0432364 0.53646± 0.0139864
Gaussian + Selective kNN, k = 5 3.53089± 1.0619 15.6396± 6.23458 0.874822± 0.0424219 0.5368± 0.0137332
Gaussian + Selective kNN, k = 20 3.53089± 1.0619 15.6396± 6.23458 0.873876± 0.0443446 0.536± 0.014724
Gaussian + Selective kNN, L2 3.53089± 1.0619 15.6396± 6.23458 0.887052± 0.0144573 0.49576± 0.00474578

Table A34: Method variation results on the ChairAngle dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Gaussian + Selective GMM 0.376692± 0.171928 1.37757± 0.382191 0.902482± 0.00436054 0.972739± 0.00191733
Gaussian + Selective GMM, k = 2 0.376692± 0.171928 1.37757± 0.382191 0.902972± 0.00540708 0.96392± 0.00121759
Gaussian + Selective GMM, k = 8 0.376692± 0.171928 1.37757± 0.382191 0.901822± 0.00328732 0.981238± 0.00113892
Gaussian + Sel. GMM, Spec. Norm 0.516487± 0.227015 1.82929± 0.809339 0.903828± 0.00534803 0.970993± 0.000466666
Gaussian + Selective kNN 0.376692± 0.171928 1.37757± 0.382191 0.90222± 0.00459694 0.975465± 0.00201785
Gaussian + Selective kNN, k = 5 0.376692± 0.171928 1.37757± 0.382191 0.902561± 0.00342563 0.983804± 0.00152586
Gaussian + Selective kNN, k = 20 0.376692± 0.171928 1.37757± 0.382191 0.902137± 0.00457917 0.966592± 0.00129222
Gaussian + Selective kNN, L2 0.376692± 0.171928 1.37757± 0.382191 0.903183± 0.00504343 0.977247± 0.00149241

Table A35: Method variation results on the ChairAngle-Tails dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Gaussian + Selective GMM 0.241214± 0.091736 1.09417± 0.382907 0.901946± 0.00382993 0.655448± 0.001058
Gaussian + Selective GMM, k = 2 0.241214± 0.091736 1.09417± 0.382907 0.903353± 0.00471599 0.645452± 0.00155062
Gaussian + Selective GMM, k = 8 0.241214± 0.091736 1.09417± 0.382907 0.902103± 0.00382668 0.660472± 0.00115112
Gaussian + Sel. GMM, Spec. Norm 0.375118± 0.24509 1.24343± 0.611561 0.910147± 0.00315697 0.65518± 0.00176257
Gaussian + Selective kNN 0.241214± 0.091736 1.09417± 0.382907 0.860311± 0.00617031 0.703038± 0.00691227
Gaussian + Selective kNN, k = 5 0.241214± 0.091736 1.09417± 0.382907 0.88625± 0.00498864 0.683742± 0.00547083
Gaussian + Selective kNN, k = 20 0.241214± 0.091736 1.09417± 0.382907 0.809551± 0.00764886 0.743287± 0.0107676
Gaussian + Selective kNN, L2 0.241214± 0.091736 1.09417± 0.382907 0.89682± 0.00698641 0.662076± 0.00289246

Table A36: Method variation results on the ChairAngle-Gap dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Gaussian + Selective GMM 0.454516± 0.280174 2.09212± 0.933756 0.91215± 0.00604745 0.649372± 0.00334919
Gaussian + Selective GMM, k = 2 0.454516± 0.280174 2.09212± 0.933756 0.912708± 0.00541793 0.642138± 0.00143869
Gaussian + Selective GMM, k = 8 0.454516± 0.280174 2.09212± 0.933756 0.911374± 0.00475979 0.654824± 0.00368979
Gaussian + Sel. GMM, Spec. Norm 0.294511± 0.0861797 1.19904± 0.193646 0.910836± 0.00442911 0.649996± 0.00233428
Gaussian + Selective kNN 0.454516± 0.280174 2.09212± 0.933756 0.911574± 0.00376608 0.673764± 0.0113432
Gaussian + Selective kNN, k = 5 0.454516± 0.280174 2.09212± 0.933756 0.91224± 0.00426519 0.670646± 0.00691764
Gaussian + Selective kNN, k = 20 0.454516± 0.280174 2.09212± 0.933756 0.907543± 0.00204724 0.680107± 0.0162927
Gaussian + Selective kNN, L2 0.454516± 0.280174 2.09212± 0.933756 0.913383± 0.00539352 0.658744± 0.00274677
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Table A37: Method variation results on the AssetWealth dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Gaussian + Selective GMM 0.367501± 0.0416437 1.597± 0.207599 0.850824± 0.047533 0.93838± 0.0170443
Gaussian + Selective GMM, k = 2 0.367501± 0.0416437 1.597± 0.207599 0.850232± 0.0469534 0.933687± 0.0176348
Gaussian + Selective GMM, k = 8 0.367501± 0.0416437 1.597± 0.207599 0.85067± 0.0456954 0.932879± 0.0102523
Gaussian + Sel. GMM, Spec. Norm 0.354647± 0.00973911 1.55594± 0.0421589 0.872742± 0.0250168 0.941812± 0.0101895
Gaussian + Selective kNN 0.367501± 0.0416437 1.597± 0.207599 0.852107± 0.0474734 0.933586± 0.0203541
Gaussian + Selective kNN, k = 5 0.367501± 0.0416437 1.597± 0.207599 0.85256± 0.0469571 0.933232± 0.02149
Gaussian + Selective kNN, k = 20 0.367501± 0.0416437 1.597± 0.207599 0.851914± 0.0460655 0.933636± 0.0200087
Gaussian + Selective kNN, L2 0.367501± 0.0416437 1.597± 0.207599 0.853365± 0.0410864 0.897149± 0.0162693

Table A38: Method variation results on the VentricularVolume dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Gaussian + Selective GMM 12.7238± 1.52197 51.566± 3.52739 0.752046± 0.0529087 0.707994± 0.0208741
Gaussian + Selective GMM, k = 2 12.7238± 1.52197 51.566± 3.52739 0.745271± 0.0582068 0.790752± 0.0307666
Gaussian + Selective GMM, k = 8 12.7238± 1.52197 51.566± 3.52739 0.747625± 0.0584117 0.656583± 0.0258853
Gaussian + Sel. GMM, Spec. Norm 11.6311± 0.483357 45.5475± 0.747647 0.734907± 0.00853342 0.719279± 0.0147984
Gaussian + Selective kNN 12.7238± 1.52197 51.566± 3.52739 0.735105± 0.0612413 0.911599± 0.0447475
Gaussian + Selective kNN, k = 5 12.7238± 1.52197 51.566± 3.52739 0.735857± 0.0604531 0.916614± 0.0419073
Gaussian + Selective kNN, k = 20 12.7238± 1.52197 51.566± 3.52739 0.734752± 0.0616982 0.909404± 0.0469634
Gaussian + Selective kNN, L2 12.7238± 1.52197 51.566± 3.52739 0.740812± 0.049802 0.740439± 0.0222073

Table A39: Method variation results on the BrainTumourPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Gaussian + Selective GMM 21.0625± 0.358012 93.6284± 2.29916 0.883515± 0.0138279 0.973576± 0.0187252
Gaussian + Selective GMM, k = 2 21.0625± 0.358012 93.6284± 2.29916 0.881874± 0.0118346 0.977863± 0.0145103
Gaussian + Selective GMM, k = 8 21.0625± 0.358012 93.6284± 2.29916 0.880823± 0.01273 0.973417± 0.01856
Gaussian + Sel. GMM, Spec. Norm 22.0729± 1.25273 95.0605± 3.40124 0.890506± 0.0112498 0.9738± 0.00857087
Gaussian + Selective kNN 21.0625± 0.358012 93.6284± 2.29916 0.891264± 0.00734602 0.947185± 0.0178434
Gaussian + Selective kNN, k = 5 21.0625± 0.358012 93.6284± 2.29916 0.891103± 0.00680399 0.949392± 0.0173229
Gaussian + Selective kNN, k = 20 21.0625± 0.358012 93.6284± 2.29916 0.891759± 0.00804523 0.94453± 0.0188456
Gaussian + Selective kNN, L2 21.0625± 0.358012 93.6284± 2.29916 0.879639± 0.0084247 0.981862± 0.0068585

Table A40: Method variation results on the SkinLesionPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Gaussian + Selective GMM 105.417± 1.15178 535.139± 215.446 0.821515± 0.0137705 0.849579± 0.0206181
Gaussian + Selective GMM, k = 2 105.417± 1.15178 535.139± 215.446 0.825054± 0.0122698 0.844799± 0.0191092
Gaussian + Selective GMM, k = 8 105.417± 1.15178 535.139± 215.446 0.815696± 0.010454 0.862683± 0.0259293
Gaussian + Sel. GMM, Spec. Norm 107.531± 2.11824 607.435± 407.758 0.821797± 0.0350093 0.837273± 0.0205022
Gaussian + Selective kNN 105.417± 1.15178 535.139± 215.446 0.813027± 0.0306586 0.927047± 0.00830718
Gaussian + Selective kNN, k = 5 105.417± 1.15178 535.139± 215.446 0.812763± 0.0309198 0.928375± 0.0100103
Gaussian + Selective kNN, k = 20 105.417± 1.15178 535.139± 215.446 0.812419± 0.0306294 0.929172± 0.0109976
Gaussian + Selective kNN, L2 105.417± 1.15178 535.139± 215.446 0.808667± 0.0112832 0.831784± 0.0181658

Table A41: Method variation results on the HistologyNucleiPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Gaussian + Selective GMM 211.795± 10.0239 1211.83± 396.946 0.59554± 0.0956742 0.90569± 0.0453555
Gaussian + Selective GMM, k = 2 211.795± 10.0239 1211.83± 396.946 0.597998± 0.094508 0.912836± 0.0323147
Gaussian + Selective GMM, k = 8 211.795± 10.0239 1211.83± 396.946 0.595718± 0.0973458 0.943449± 0.0409511
Gaussian + Sel. GMM, Spec. Norm 206.492± 7.82601 896.779± 61.4921 0.65672± 0.0824111 0.855668± 0.0632114
Gaussian + Selective kNN 211.795± 10.0239 1211.83± 396.946 0.608929± 0.0805954 0.846228± 0.0482832
Gaussian + Selective kNN, k = 5 211.795± 10.0239 1211.83± 396.946 0.610025± 0.0809455 0.842258± 0.046231
Gaussian + Selective kNN, k = 20 211.795± 10.0239 1211.83± 396.946 0.607876± 0.0817183 0.858491± 0.0496696
Gaussian + Selective kNN, L2 211.795± 10.0239 1211.83± 396.946 0.588514± 0.0914286 0.975562± 0.0190356

Table A42: Method variation results on the AerialBuildingPixels dataset.
Method val MAE (↓) val Interval Length (↓) test Coverage (≥ 0.90) test Prediction Rate (↑)
Gaussian + Selective GMM 217.877± 1.72493 929.562± 47.6606 0.76535± 0.0388677 0.652082± 0.0990489
Gaussian + Selective GMM, k = 2 217.877± 1.72493 929.562± 47.6606 0.751721± 0.0454772 0.634602± 0.122618
Gaussian + Selective GMM, k = 8 217.877± 1.72493 929.562± 47.6606 0.850213± 0.025791 0.617738± 0.0879951
Gaussian + Sel. GMM, Spec. Norm 220.763± 7.23119 1014.77± 164.155 0.817517± 0.0505544 0.638149± 0.046255
Gaussian + Selective kNN 217.877± 1.72493 929.562± 47.6606 0.651867± 0.0771154 0.840103± 0.0463989
Gaussian + Selective kNN, k = 5 217.877± 1.72493 929.562± 47.6606 0.654256± 0.0771566 0.846067± 0.0456245
Gaussian + Selective kNN, k = 20 217.877± 1.72493 929.562± 47.6606 0.647779± 0.0795474 0.832596± 0.0542738
Gaussian + Selective kNN, L2 217.877± 1.72493 929.562± 47.6606 0.815075± 0.0278439 0.641851± 0.11347
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ỹ =

1 +
∑k

j=1 pθ(x)j pθ(x)j = �mθ(x)j>0.5





±60

leads × samples
400

4 096

70

30 20
10

79 577 166 908 126 970 295 606



±60

leads× samples 8× 4096 32 768
290 889

8× 4096



mθ
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ŷ y

x

0.53 0.50



≤ 30

30
-4
0

40
-5
0

50
-6
0

60
-7
0

70
-8
0
>
80

Age

0.4

0.5

0.6

0.7
M
A
E

potassium calcium male female

≤ 30

30
-4
0

40
-5
0

50
-6
0

60
-7
0

70
-8
0
>
80

Age

0.5

1.0

T
ar
ge
t
S
D

y
k

k
μ ± 2σ k>

k
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