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Regression is a fundamental machine learning task with many important applications within
computer vision and other domains. In general, it entails predicting continuous targets from
given inputs. Deep learning has become the dominant paradigm within machine learning in
recent years, and a wide variety of different techniques have been employed to solve regression
problems using deep models. There is however no broad consensus on how deep regression
models should be constructed for best possible accuracy, or how the uncertainty in their
predictions should be represented and estimated.

These open questions are studied in this thesis, aiming to help take steps towards an ultimate
goal of developing deep regression models which are both accurate and reliable enough for real-
world deployment within medical applications and other safety-critical domains.

The first main contribution of the thesis is the formulation and development of energy-
based probabilistic regression. This is a general and conceptually simple regression framework
with a clear probabilistic interpretation, using energy-based models to represent the true
conditional target distribution. The framework is applied to a number of regression problems
and demonstrates particularly strong performance for 2D bounding box regression, improving
the state-of-the-art when applied to the task of visual tracking.

The second main contribution is a critical evaluation of various uncertainty estimation
methods. A general introduction to the problem of estimating the predictive uncertainty of deep
models is first provided, together with an extensive comparison of the two popular methods
ensembling and MC-dropout. A number of regression uncertainty estimation methods are then
further evaluated, specifically examining their reliability under real-world distribution shifts.
This evaluation uncovers important limitations of current methods and serves as a challenge to
the research community. It demonstrates that more work is required in order to develop truly
reliable uncertainty estimation methods for regression.
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Populéirvetenskaplig
sammanfattning

Maskininldrning gar ut pa att man samlar in ndgon typ av data, att man anpas-
sar en modell till den insamlade datan, och att man slutligen anvinder denna
modell for att forutse och prediktera diverse saker. Man kan sédga att maskinin-
larning handlar om att skapa data-drivna prediktionsmodeller, som sedan kan
anvéndas for att automatiskt 16sa olika typer av praktiska problem.

De flesta problem som studeras inom maskininldrning kan kategoriseras som
antingen klassificerings- eller regressionsproblem. I ett klassificeringsproblem
kan modellen enbart vilja bland en diskret médngd av olika alternativ nir den
skapar sina prediktioner. Att ge en binér prediktion (ja eller nej) for huruvida
det kommer att regna imorgon &r ett typiskt exempel pa ett klassificeringsprob-
lem. Ett annat exempel 4r att avgéra om en viss given bild forestéller antingen
en katt, hund eller fagel.

I ett regressionsproblem &dr prediktionerna istéllet kontinuerliga virden. Det
kan rora sig om att prediktera hur mycket ett visst hus kommer kosta nér det
siljs, att prediktera hur stor elférbrukning ett visst hushall kommer ha under
nésta ar, eller att prediktera avstandet till de fotgéngare som befinner sig i
ndrheten av en sjidlvkorande bil.

Denna avhandling studerar hur maskininldrning ska anvindas for att pa bésta
mojliga sitt kunna 16sa just olika typer av regressionsproblem. Mer specifikt
sa studeras hur en sérskild typ av maskininldrningsmodeller, som kallas djupa
neurala nédtverk, kan anvéndas i detta syfte. Ett djupt neuralt natverk ar egentli-
gen bara en helt vanlig matematisk funktion, men med en speciell struktur och
ett stort antal parametrar som kan justeras for att anpassa funktionen till insam-
lad data.

Detta kan liknas vid en rit linje y = kx + m. Denna rita linje beskriver
en funktion fran x till 3, och har tvé parametrar i form av & (linjens lutning)
och m (vid vilket viarde som linjen skir y-axeln). Genom att dndra virdet pa
dessa parametrar k£ och m sa fas helt olika rita linjer, och ddrmed &ven helt
olika funktioner frén z till y. Ett djupt neuralt nitverk har istéllet tusentals
eller till och med miljontals parametrar, men grundprincipen dr fortfarande



densamma: om virdet pa dessa parametrar justeras sa fas helt olika funktioner,
och om de justeras pa ett smart sétt sa kan funktionen fés att passa bra till
insamlad data.

Djupa neurala nétverk kan anvindas pa manga olika sitt for att 16sa regres-
sionsproblem, och tidigare forskning har ocksé skapat manga olika typer av
“djupa” regressionsmodeller pa detta vis. Det rader dock ingen bred enighet
kring hur dessa djupa regressionsmodeller bor skapas for att generera sa bra
prediktioner som mojligt, och inte heller kring hur osékerheten i dessa predik-
tioner bor uppskattas eller anges.

Dessa specifika fragor dr vad som studeras i denna avhandling. Dess syfte
ar att bidra till att steg tas mot en framtid dédr djupa regressionsmodeller ar
tillrackligt sdkra och tillforlitliga for att kunna anvindas inom sjukvérden och
andra sikerhetskritiska omraden.

Avhandlingens forsta huvudsakliga bidrag dr utvecklingen av en generell och
konceptuellt enkel metod for att skapa djupa regressionsmodeller. Denna
metod kallas energibaserad probabilistisk regression. Metoden tillimpas for
att 16sa ett antal olika typer av regressionsproblem, och visar sig fungera
sdrskilt bra for att automatiskt spara olika objekt i bildsekvenser.

Det andra huvudsakliga bidraget dr en kritisk utvérdering av olika metoder som
anvdnds for att uppskatta osdkerheten i de prediktioner som skapas av djupa re-
gressionsmodeller. Forst ges en overgripande introduktion till hur osékerheten
i djupa modellers prediktioner kan uppskattas, tillsammans med en noggrann
empirisk jamforelse av tva sdrskilt populdra metoder.

Ett antal andra metoder for osdkerhetsuppskattning utvirderas sedan ytterli-
gare, dér deras tillforlitlighet testas sdrskilt utforligt. Denna utvirdering blot-
tlagger viktiga brister och begransningar hos nuvarande metoder, och utgor
ddrmed en sorts utmaning for andra forskare. Utvérderingen visar namligen
att mer forskningsarbete kommer kréavas for att kunna skapa verkligt sékra och
tillforlitliga djupa regressionsmodeller.
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Introduction

Supervised machine learning problems entail collecting examples of how an in-
put x relates to some target , fitting a model to the collected data { (x, y;) } Y |,
and then using this model to output predicted targets for other, previously un-
seen inputs x [1, 2]. The model often contains parameters # which explicitly
determine how inputs x are mapped onto predicted targets y. Fitting this model
to the collected data then means finding the parameter values that minimize a
certain loss function, thereby “learning” a model from data. If accurate enough,
such data-driven prediction models can be utilized to automatically perform
various types of practical tasks.

To create accurate data-driven prediction models, deep learning has emerged
as the dominant paradigm within machine learning during the past decade [3,
4]. It involves the use of so-called neural networks, which are models contain-
ing a large number of parameters # with a hierarchical structure of multiple
hidden layers. These “deep models” are capable of extracting predictive yet
compact feature representations even for high-dimensional inputs z, for exam-
ple images and text files, enabling various applications within complex tasks
such as image recognition and natural language processing.

All supervised machine learning problems can be further categorized into ei-
ther classification or regression problems. In classification, the targets y only
take on values in a discrete set of labels. Simple examples include making a bi-
nary prediction of whether or not it will rain tomorrow, or classifying if a given
image depicts either a cat, dog or a bird. In regression problems, the targets y
are instead continuous values, e.g. y € R. Examples include predicting house
prices (e.g. given features such as house size, location and construction year),
predicting electric power consumption based on historical data, or predicting
the 3D position of all pedestrians in the surroundings of an autonomous vehicle
(e.g. given camera and radar sensor measurements).

Regression is thus a fundamental machine learning task, with many important
applications within computer vision and other domains, but still remains some-
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Chapter 1. Introduction

what understudied compared to classification. While classification problems
generally are addressed using standardized target representations and loss func-
tions, these are not directly applicable to regression. Consequently, a wide va-
riety of different techniques have been employed to solve regression problems,
and there is no broad consensus on how to construct deep regression models
for best possible accuracy, or how to represent and estimate the uncertainty in
their predictions.

This thesis studies these open questions, aiming to take steps towards an ulti-
mate goal of developing deep regression models which are both accurate and
reliable enough for deployment within medical applications and other safety-
critical domains!.

1.1 Motivating Example

Within medical imaging, a number of tasks are naturally formulated as regres-
sion problems, including brain age estimation [7, 8, 9], prediction of cardiovas-
cular volumes and risk factors [10, 11] and body composition analysis [12, 13].
If machine learning models could be deployed to automatically regress various
such properties within real-world clinical practice, this would ultimately help
lower costs and improve patient outcomes across the medical system [14].

As a specific example that will be studied later in the thesis (in Paper VIII),
let us consider the problem of ECG-based electrolyte prediction. Given an
electrocardiogram (ECG), which measures the electrical activity of the heart of
a person, the task is to predict the potassium concentration level in the person’s
body. Abnormal potassium levels can lead to serious heart conditions, and if
the concentration level could be monitored using an ECG-based regression
model, potentially life-threatening conditions could thus be avoided.

For such a regression model to be useful in practice, it first of all needs to
be capable of producing highly accurate predictions. The predicted concen-
tration levels must be close to the true values, and even very small changes
in the true concentration must be reflected in a corresponding change in the
prediction. While a model that produces correct but coarse predictions, e.g.
a model that classifies whether the concentration level is above or below a
certain threshold, would be somewhat useful, it would fail to enable crucial
use-cases such as early detection of abnormal changes, or monitoring that the
concentration decreases rapidly enough after administration of medication for
hyperkalemia (high potassium).

'The image on the cover of this thesis was generated by a diffusion-based text-to-image gener-
ative model [5, 6], from the text input A beautifully colorful image to put on the cover of a PhD
thesis titled “Towards Accurate and Reliable Deep Regression Models”.
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1.2. Contributions & Thesis Outline

Moreover, the regression model needs to be reliable. 1f the model would start to
output completely incorrect predictions for some patients once it is deployed in
a certain hospital (e.g., a patient’s true concentration level is abnormally high,
but the model predicts a value well within the normal range), this could have
catastrophic consequences. During such real-world deployment, the model is
however bound to occasionally encounter input ECGs « for which the model
can not be expected to output entirely correct predictions. For example, it
would be inherently difficult for any model (or human) to accurately predict
the potassium level from an ECG that is severely corrupted by measurement
noise. A reliable model must be able to detect such cases (enabling doctors to
take appropriate action, e.g. acquiring a new ECG), instead of “failing silently”
and simply output a prediction that is far from the true value.

This issue would be solved by a regression model that, along with a predicted
target y, also outputs an estimate of the uncertainty in its prediction for each
input . When encountering inputs for which an accurate prediction can not be
expected, the model could then “fail loudly” by outputting a large uncertainty.
While such models still would output incorrect predictions sometimes, it would
also indicate to users that those predictions should not be trusted. These uncer-
tainty estimates themselves must however also be accurate and reliable. Oth-
erwise, if the model occasionally becomes overconfident and outputs highly
confident (low uncertainty) yet incorrect predictions, providing these uncer-
tainty estimates might just instill users with a false sense of security — arguably
making the model even less suitable for practical deployment.

In summary, real-world deployment within safety-critical domains puts very
high requirements on deep regression models, in terms of a range of different
aspects related to both accuracy and reliability. In this thesis, some of these
aspects are studied in detail.

1.2 Contributions & Thesis Outline

This thesis is divided into two parts. The first part contains five chapters (in-
cluding the current one), which are intended to provide background informa-
tion and an overview for the eight included papers. These eight papers consti-
tute the second part of the thesis, representing the scientific contributions.

The main general contribution of this work is method development and eval-
uation that helps to take steps towards the ultimate goal of developing deep
regression models which are accurate and reliable enough for real-world de-
ployment within safety-critical domains.

The eight included papers can in turn be divided into two main tracks. The first
track consists of Paper I - Paper V, and focuses on how to develop accurate

15



Chapter 1. Introduction

L Towards Accurate & Reliable Deep Regression Models ]

Accurate Models via Energy-Based Reliable Models via Uncertainty
Probabilistic Regression Estimation Methods

/\ /\

Method Development Application &
Motivating Example

SRS Lw/J\m S0

Figure 1.1: Conceptual overview of the eight papers included in the thesis (Paper |
- Paper VIII), which can be divided into two main tracks. The first track consists of
Paper I - Paper V, and focuses on how to develop accurate deep regression models.
The second track consists of Paper VI - Paper VIII, and focuses on how to develop
reliable deep regression models. Both tracks include both application-oriented papers,
and papers entailing more fundamental method development and evaluation.

Method Development
& Evaluation

‘ Application

deep regression models. Specifically, it focuses on energy-based probabilis-
tic regression — using energy-based models to accurately represent the true
conditional target distribution p(y|x). Paper I - Paper III propose a general re-
gression framework and evaluate different method variations. This approach
is then applied to two specific applications in Paper IV & V.

The second track consists of Paper VI - Paper VIII, and focuses on how to
develop reliable deep regression models via uncertainty estimation. A criti-
cal evaluation of various uncertainty estimation methods is conducted in Pa-
per VI & VII, uncovering important limitations. Paper VIII applies some of
the evaluated methods to the task of ECG-based electrolyte prediction, and
also serves as the primary motivating example for much of the work in Pa-
per VI & VIIL.

Both tracks thus include both application-oriented papers, and papers entailing
more fundamental method development and evaluation. The two tracks of
papers are conceptually illustrated in Figure 1.1.

The remainder of the current chapter presents a summary of the eight included
papers, along with some background on how they originated and evolved into
their final form. Next, Chapter 2 provides a general introduction to how vari-
ous machine learning techniques can be utilized to solve regression problems
from data. It constitutes relevant background for all eight included papers.
Chapter 3 then provides a further introduction specifically for the first track of
Paper I - Paper V, whereas Chapter 4 introduces the second track of Paper VI
- Paper VIII. Chapter 5, which is meant to be read after the papers, finally
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1.3. Papers Included in the Thesis

contains some concluding remarks and reflections, along with an outlook on
possible future work.

1.3 Papers Included in the Thesis

The eight papers included in this thesis are briefly summarized next, together
with a short explanation of my individual contributions.

17



Chapter 1. Introduction

Paper I

Energy-Based Models for Deep Probabilistic Regression. Fredrik K. Gustafs-
son, Martin Danelljan, Goutam Bhat, Thomas B. Schon. The European Confer-
ence on Computer Vision (ECCV), 2020.

Deep Neural Network

p(y1x 6)

Summary We propose a general and conceptually simple regression method
with a clear probabilistic interpretation. We create an energy-based model of
the conditional target density p(y|z), using a deep neural network to predict the
un-normalized density from the input-target pair (x,y). This model of p(y|x)
is trained by directly minimizing the associated negative log-likelihood, ap-
proximated using Monte Carlo sampling. Notably, our model achieves a 2.2%
average precision (AP) improvement over Faster-RCNN for object detection
on the COCO dataset, and sets a new state-of-the-art on visual tracking when
applied for bounding box regression.

Statement of Contribution Martin came up with the original underlying idea
of the paper. I refined the original idea into the energy-based model formula-
tion in discussions with Martin and Thomas (using the feedback provided by
anonymous reviewers on a previous version of the paper). Martin conducted
the visual tracking experiments. Goutam conducted the object detection ex-
periments. I conducted the remaining experiments and did the majority of the
writing, with a lot of feedback from Martin and Thomas.

18



1.3. Papers Included in the Thesis

Paper 11

How to Train Your Energy-Based Model for Regression. Fredrik K. Gustafs-
son, Martin Danelljan, Radu Timofte, Thomas B. Schén. The British Machine
Vision Conference (BMVC), 2020.

Summary We propose a simple yet highly effective extension of noise con-
trastive estimation (NCE) to train energy-based models p(y|z; 0) for regression
tasks. Our proposed method NCE+ can be understood as a direct generalization
of NCE, accounting for noise in the annotation process of real-world datasets.
We provide a detailed comparison of NCE+ and six popular methods from the
literature, the results of which suggest that NCE+ should be considered the go-
to training method. We also apply NCE+ to the task of visual tracking, achiev-
ing state-of-the-art performance on five commonly used datasets. Notably, our
tracker achieves 63.7% AUC on LaSOT and 78.7% success on TrackingNet.

Statement of Contribution I came up with the underlying idea of the paper.
Martin conducted the visual tracking experiments. I conducted the remaining
experiments and did the majority of the writing, with feedback from the other
authors.

19



Chapter 1. Introduction

Paper III

Learning Proposals for Practical Energy-Based Regression. Fredrik K.
Gustafsson, Martin Danelljan, Thomas B. Schon. The International Conference
on Artificial Intelligence and Statistics (AISTATS), 2022.

P
A

e

Summary We derive an efficient and convenient objective that can be em-
ployed to train a parameterized distribution ¢(y|x; ¢) by directly minimizing
its KL divergence to a conditional energy-based model (EBM) p(y|x;0). We
then employ the proposed objective to jointly learn an effective mixture den-
sity network (MDN) proposal distribution during EBM training, thus address-
ing the main practical limitations of energy-based regression. Furthermore,
we utilize our derived training objective to learn MDNs with a jointly trained
energy-based teacher, consistently outperforming conventional MDN training
on four real-world regression tasks within computer vision.

Statement of Contribution I came up with the underlying idea of the paper
in discussions with Martin and Thomas, after having found initial empirical
evidence of Result 1. Martin came up with the first mathematical derivation of
Result 1. I conducted all experiments and did the majority of the writing, with
feedback from Martin and Thomas.
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Paper IV

Accurate 3D Object Detection using Energy-Based Models. Fredrik K.
Gustafsson, Martin Danelljan, Thomas B. Schon. The IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops (CVPR Workshops),
2021.

SA-SSD 7| Pool |7 i ftxy)

Summary We apply energy-based models p(y|z; 0) to the task of 3D bounding
box regression, extending the recent energy-based regression approach from
2D to 3D object detection. This is achieved by designing a differentiable pool-
ing operator for 3D bounding boxes y, and adding an extra network branch to
the state-of-the-art 3D object detector SA-SSD. We evaluate our proposed de-
tector on the KITTI dataset and consistently outperform the SA-SSD baseline,
demonstrating the potential of energy-based models for 3D object detection.

Statement of Contribution I came up with the underlying idea of the paper,
conducted all experiments and did the majority of the writing, with feedback
from Martin and Thomas throughout the entire process.
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Paper V

Deep Energy-Based NARX Models. Johannes Hendriks, Fredrik K. Gustafs-
son, Anténio Ribeiro, Adrian Wills, Thomas B. Schon. The 19th IFAC Sympo-
sium on System Identification (SYSID), 2021.

s True distribution e True distribution
== Learned distribution = Learned distribution

0.0
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€t €t
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Summary We study the problem of learning nonlinear ARX models based
on observed input-output data. In particular, we want to learn a conditional
distribution of the current output based on a finite window of past inputs and
outputs. To achieve this, we consider the use of energy-based models. This
energy-based model relies on a general function to describe the distribution,
and here we consider a neural network for this purpose. The primary benefit
of our approach is that it is capable of learning both simple and highly complex
noise models, which we demonstrate on simulated and experimental data.

Statement of Contribution Johannes came up with the underlying idea of
the paper, conducted all experiments and did the majority of the writing. I dis-
cussed the methods and experiments in meetings with Johannes and the other
authors. I contributed to the writing of Section 3, and provided detailed feed-
back on the rest of the manuscript.
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1.3. Papers Included in the Thesis

Paper VI

Evaluating Scalable Bayesian Deep Learning Methods for Robust Com-
puter Vision. Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Schon.
The IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-
shops (CVPR Workshops), 2020.
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Summary We propose a comprehensive evaluation framework for scalable
epistemic uncertainty estimation methods in deep learning. It is specifically
designed to test the robustness required in real-world computer vision appli-
cations. We also apply our proposed framework to provide the first properly
extensive and conclusive comparison of the two current state-of-the-art scal-
able methods: ensembling and MC-dropout. Our comparison demonstrates
that ensembling consistently provides more reliable and practically useful un-
certainty estimates.

Statement of Contribution I came up with the underlying idea of the paper
in discussions with Martin and Thomas. I conducted all experiments and did
the majority of the writing, with a lot of feedback from Martin and Thomas.
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Paper VII

How Reliable is Your Regression Model’s Uncertainty Under Real-World
Distribution Shifts? Fredrik K. Gustafsson, Martin Danelljan, Thomas B.
Schon. Transactions on Machine Learning Research (TMLR), 2023.
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Summary We propose a benchmark for testing the reliability of regression
uncertainty estimation methods under real-world distribution shifts. It con-
sists of eight image-based regression datasets with different types of challeng-
ing distribution shifts. We use our benchmark to evaluate many of the most
common uncertainty estimation methods, as well as two state-of-the-art uncer-
tainty scores from OOD detection. While methods are well calibrated when
there is no distribution shift, they all become highly overconfident on many of
the benchmark datasets. This uncovers important limitations of current uncer-
tainty estimation methods, and our benchmark thus serves as a challenge to the
research community.

Statement of Contribution I came up with the underlying idea of the paper
in discussions with Martin and Thomas. I conducted all experiments and did
the majority of the writing, with feedback from Martin and Thomas. The anal-
ysis of the results was also extended quite substantially based on feedback by
the anonymous reviewers (Figure 4, Figure A1-A3 and Figure A6-A17 were
added).
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1.3. Papers Included in the Thesis

Paper VIII

ECG-Based Electrolyte Prediction: Evaluating Regression and Probabilis-
tic Methods. Philipp Von Bachmann, Daniel Gedon, Fredrik K. Gustafsson,
Anténio H. Ribeiro, Erik Lampa, Stefan Gustafsson, Johan Sundstrom, Thomas
B. Schon. In Preparation, 2023.
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Summary Imbalances of the electrolyte concentration levels in the body can
lead to catastrophic consequences, but accurate and accessible measurements
could improve patient outcomes. While blood tests provide accurate measure-
ments, they are invasive and the laboratory analysis can be slow or inaccessi-
ble. In contrast, an ECG is a widely adopted tool which is quick and simple
to acquire. However, the problem of estimating continuous electrolyte concen-
trations directly from ECGs is not well-studied. We therefore investigate if
regression methods can be used for ECG-based prediction of electrolyte con-
centrations.

Statement of Contribution Johan and Thomas came up with the initial un-
derlying idea of the paper. The ECG-electrolyte data was provided by Ste-
fan, Johan and Erik, and Ant6nio helped create the train/test datasets. Philipp
conducted all experiments, and did the majority of the writing for the initial
manuscript. Daniel and I acted as supervisors for Philipp. Daniel, Philipp and
I came up with the detailed problem formulation and planned the experiments,
with feedback from the other authors. Daniel and I revised the manuscript
based on feedback by anonymous reviewers, after discussions with the other
authors.

25
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1.4 Related but not Included Papers

In addition to the eight included papers, the following research (to which [ have
contributed) is also relevant to this thesis:

Uncertainty-Aware Body Composition Analysis with Deep Regression En-
sembles on UK Biobank MRI. Taro Langner, Fredrik K. Gustafsson, Benny
Avelin, Robin Strand, Hakan Ahlstrom, Joel Kullberg. Computerized Medical
Imaging and Graphics, Volume 93, 2021.

Image Restoration with Mean-Reverting Stochastic Differential Equations.
Ziwei Luo, Fredrik K. Gustafsson, Zheng Zhao, Jens Sjolund, Thomas B. Schon.
The International Conference on Machine Learning (ICML), 2023.

Refusion: Enabling Large-Size Realistic Image Restoration with Latent-
Space Diffusion Models. Ziwei Luo, Fredrik K. Gustafsson, Zheng Zhao, Jens
Sjolund, Thomas B. Schon. The IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPR Workshops), 2023.

Controlling Vision-Language Models for Universal Image Restoration. Zi-
wei Luo, Fredrik K. Gustafsson, Zheng Zhao, Jens Sjolund, Thomas B. Schon.
arXiv preprint arXiv:2310.01018, 2023.

The first paper is closely connected to the second track of Paper VI - Paper VIII.
It applies the approach of Paper VI to a certain medical imaging application,
which also serves as an additional motivating example for the included work
on reliable deep regression models.

The three remaining papers study the problem of image restoration, which is an
example of an interesting regression problem in which clean, high-quality im-
ages y should be predicted from corrupted, low-quality versions z (e.g. image
deblurring, denoising or dehazing).

1.5 Chronology of the Included Papers

The eight included papers are not entirely in chronological order, but are in-
stead listed according to the structure illustrated in Figure 1.1. Here, I provide
some background on how and in what order the papers originated.

Paper VI is the oldest of the included papers. The underlying idea originated
already during the work of my MSc thesis [15] on automotive 3D object detec-
tion. This application naturally raises questions related to uncertainty estima-
tion, as the predicted 3D position for distant or partially occluded surrounding
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1.5. Chronology of the Included Papers

vehicles should be inherently more uncertain than for clearly visible vehicles
nearby. Thus, we set out to study different uncertainty estimation methods in
the context of automotive applications.

Next, we started working on Paper 1. The original idea came from Martin,
which entailed exploring if the loU-Net [16] approach could be extended to a
general probabilistic regression framework. The first version of the paper was
entitled “Deep Conditional Target Densities for Accurate Regression” and did
not make any references to energy-based models. Based on feedback by anony-
mous reviewers, and following a more extensive review of previous work, the
paper was then refined into its current form.

Paper II then followed as a quite natural extension of Paper I. From the re-
view of previous work on energy-based models, it was clear that a wide vari-
ety of alternative training methods had been explored. This previous work had
however almost exclusively focused on generative modelling, and how to best
train energy-based models specifically for the regression setting was therefore
an open question.

Next, we applied this work on energy-based regression to the task of 3D object
detection in Paper IV. I was still interested in this task since my MSc thesis,
and was curious to explore if the good performance achieved on object detec-
tion and visual tracking (bounding box regression) in Paper I & II also could
be extended from 2D to 3D. At roughly the same time, we also explored if the
energy-based regression approach could be applied to system identification
problems, resulting in Paper V.

Following this more application-oriented work, a methodological improve-
ment was proposed in Paper III. The underlying idea originated from empiri-
cal observations made during the development of Paper I & II, which seemed
to indicate that a proposal distribution could be jointly trained together with the
energy-based model. We were curious to explore if these observations could
be properly understood, and also saw potential practical benefits (not having
to manually specify a proposal for training the energy-based model).

Next, I got involved in the work on Paper VIII. The underlying idea was to
combine previous work by colleagues and collaborators on ECG-based clas-
sification tasks [17, 18] with our work on regression. Paired ECG-electrolyte
data could be extracted from a previously utilized large-scale dataset, and au-
tomatic electrolyte prediction was deemed a clinically impactful application.

Lastly, Paper VII was completed shortly after the first version Paper VIII,
and much of the work on these two papers was conducted in parallel. 1 had
remained interested in uncertainty estimation techniques and reliability-related
issues ever since Paper VI, as they always had struck me as important and
intriguing problems. After completing Paper 111, I thus decided that it finally
was time to return to these topics. Discussions during the work on Paper VIII
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Chapter 1. Introduction

then also triggered a number of questions regarding what requirements such
real-world clinical deployment would put on deep regression models. To a
large extent, these questions shaped the problem formulation of Paper VII.
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Learning to Solve Supervised
Regression Problems

This chapter provides a general introduction to supervised machine learning,
and discusses some of the specific challenges associated with solving regres-
sion problems. It is relevant background material for all eight included papers.

2.1 Supervised Regression Problems

In a supervised regression problem, the task is to predict a target value y* € )
for any given input z* € X'. To solve this, we are also given a training set of N
i.i.d. input-target pairs, D = {(z;,v:)}Y,, (xi,vi) ~ p(z,y). What separates
regression from classification is that the target space ) is continuous, ) = R,

In this thesis, I will mostly consider regression problems from the computer
vision domain, meaning that the input space X often will correspond to the
space of images. Other examples will however also be studied, including the
space of 3D point clouds (Paper [V) and 12-lead ECGs (Paper VIII). The target
space YV will vary with the specific regression problem. I will often focus on
the 1D case, i.e. when ) = R, but multidimensional target spaces such as
Y = R*and Y = R” (bounding box regression in 2D and 3D, respectively)
will also be considered.

2.2 A First Simple Machine Learning Method

One conceptually simple approach for solving supervised regression problems
is the k nearest neighbours (kNN) method. Given a new input x*, kNN con-
structs a prediction §(z*) by explicitly utilizing the training data {(z;, v;)} ;.
First, the distance ||z; — 2*|| to #* is computed for all training inputs {z;} ;.
Next, the k training inputs {x;,, ..., x;, } with the smallest distance to z* are
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Chapter 2. Learning to Solve Supervised Regression Problems

extracted. Finally, a prediction §(z*) is computed as the average of the k cor-
responding training targets {v;,,...,y;, }-

Using this simple algorithm, a computer program could then be constructed
that is capable of taking any previously unseen z* as input and outputting a
corresponding prediction g(z*). Crucially, what value y(x*) this computer
program outputs for a given input x* is entirely determined by the training data
{(xs,y:)}I¥,. If a different set of input-target pairs {(z;,y,)}}L, instead had
been provided as training data, the predicted value y(z*) would also change.

This is perhaps the simplest possible example of supervised machine learning.
Instead of writing a conventional computer program, taking z* as input and
returning y(x*) based on an explicit set of rules or formulas, the KNN method
automatically defines a mapping from input z* to prediction §(z*) based on
the provided training data {(z;,y;)},. Importantly, the KNN method is also
generally applicable to any regression task for which such training data can be
collected.

As long as examples {(z;,v;)}Y, of how an input x relates to some target y
can be collected, for each of the different considered tasks, the same general
kNN method could directly be applied to predict both potassium concentra-
tion levels from ECGs and ventricular volumes from echocardiogram images,
for instance. Designing conventional computer programs for two such varied
regression problems would instead require significant time and effort to explic-
itly incorporate highly problem-specific domain knowledge into two entirely
different set of rules.

For some regression problems, the relationship between input x and target y
might also be virtually impossible to describe explicitly, even for highly skilled
domain experts. For example, exactly how ECGs relate to electrolyte con-
centration levels is not fully understood. It is however still possible to pair
an ECG z with a corresponding concentration level y, by using an alterna-
tive measurement method (laboratory analysis of blood tests provides accurate
measurements, but is slow and inaccessible compared to ECG-based methods).
The general underlying idea of the machine learning approach is thus that by
collecting a large number of observed input-target pairs {(x;, ;) } fil, and con-
structing a computer program that defines a mapping from x to y entirely based
on this data, the relationship between ECG and concentration level will hope-
fully be “learned” automatically.

Collecting input-target pairs {(z;,;)}, can of course also be difficult, or
at least very time-consuming and expensive, for certain regression problems.
Moreover, the number of collected pairs /N might have to be very large in order
for the kNN method (or other more advanced machine learning approaches) to
perform well in terms of predictive accuracy. All data-driven methods have
some inherent limitations, and machine learning should definitely not be ex-
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pected to perfectly solve every imaginable regression problem. The general
idea, of using observed data to automatically “learn” relationships between in-
puts z and targets y, has however turned out to be extremely powerful. The
kNN method is an illustrative example of this general idea.

2.3 Machine Learning with Parametric Models

The kNN method described above is an example of a so-called nonparamet-
ric machine learning method, since the training data {(z;, yi)}f\il is explicitly
used every time a prediction §(x*) is computed for a given 2*. While the kNN
method is conceptually very simple, it therefore quickly becomes impractical
when the size N of the training set increases.

A second general machine learning approach is to instead fit a parametric
model to the training data. The data {(z;,;)}%., is used once to estimate the
parameters of the model in an initial training stage, but can then be discarded.
To output a prediction ¢(x*) for a new input x*, only the estimated parameters
are required.

Machine learning can now be described in terms of three major cornerstones:
1) Training data. 2) Model. 3) Learning algorithm. First, training data in the
form of observed input-target pairs { (z;, y;) } ¥, is collected. Second, a model
containing parameters 6 is specified. Finally, a learning algorithm is used to
find the parameter values 6 that make the model fit the data as well as possible.

Specifying the model in turn entails two steps. First, a function fp : X — O
that is parameterized by # € R” is specified. This function fy maps inputs
x € X tooutputs fp(x) € O in some output space O. Secondly, a loss function
0(fo(x;), ;) is chosen, determining what is meant by a “good data fit”.

With a specified function fy : X — O and loss ¢( fy(z;),y;), a learning algo-
rithm is then utilized to find the optimal parameters 6*,

N
6 = argmin > _ ((fo(x:), i), @2.1)

o =
i.e. to find the parameter values 6 that minimize the loss function ¢( fp(x;), ;)
over the training data {(z;,9;)}Y,. The learning algorithm is thus used to

numerically solve the optimization problem in (2.1).

The simplest and most commonly used approach is to let the function fy di-
rectly output predicted targets, y(z) = fg(x), and choosing the L2 loss func-
tion, £(fo(x:),y:) = || fo(xi) — vil|3. In this case, solving (2.1) to find the opti-
mal parameters 0* thus corresponds to finding the parameters 0 that minimize
the discrepancy between the predictions fp(x;) and the true target values y;.
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Chapter 2. Learning to Solve Supervised Regression Problems

Once 6* has been computed, the training data {(z;,y;)}X, can be discarded
and a prediction §(z*) = fp- (*) can be output for any given x*.

This simple approach can however be modified in numerous ways, all lead-
ing to different models. First of all, one could replace the L2 loss function
with for instance the L1 loss, ¢(fp(x;),v:) = || fo(xi) — vyil|1, or the Huber
loss [19]. This small modification changes the optimization objective in (2.1),
resulting in different optimal parameters 6* and thus also different predictions
y(x*) = fo-(x*). Secondly, the internal structure of the parameterized func-
tion fy allows for a range of customization options (e.g., changing the number
of layers if fy is defined in terms of a neural network), all of which also result
in different predictions g(x*) = fp«(2*). Finally, instead of letting fp directly
output predicted targets, this function could be designed to, for example, map
inputs z to the mean and variance of a Gaussian distribution. That is, the out-
put space O of the function fy : X — O could also be modified. Just this
second machine learning cornerstone of specifying a model thus entails a large
number of different possible design choices.

Both of the two other cornerstones — collecting training data {(z;,y;)}%.,, and
using a learning algorithm to find #* in (2.1) — can also significantly impact
the performance of machine learning methods when deployed in real-world
applications. They are both active research topics and I definitely do not con-
sider them to be solved problems. Many of the related issues (for example,
how to best construct large and high-quality training datasets, or how to effi-
ciently find good approximate solutions to the optimization problem (2.1)) are
however common to both regression and classification problems.

In contrast, the 2) Model cormerstone involves a number of open questions
which are specific for regression. While classification problems generally are
addressed using a standardized approach, letting fy map inputs x to class logit
scores and using the cross-entropy loss function, previous work has explored
a range of different output spaces O and loss functions ¢( fp(z;), y;) for regres-
sion problems [20, 21, 22, 23, 16, 24]. In this thesis, I have focused almost
exclusively on this second cornerstone of how to specify the model.

For the 1) Training data, 1 have in this thesis either directly used or modified
existing public datasets, or created simple synthetic datasets for illustrative ex-
amples. The only exception is Paper VIII in which we utilize internal datasets
of real-world ECG-electrolyte pairs. I was however not directly involved in
the collection or curation of these datasets. For the 3) Learning algorithm, 1
have always just used existing stochastic gradient-based optimizers such as
ADAM [25].

In summary, [ have in this thesis focused on how to best specify the model, i.e.
on how the function fp : X — O and corresponding loss function ¢( fp(x;), ;)
should be designed. The training dataset {(z;, y;) }}., has mostly been consid-
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ered given, and common gradient-based optimizers have then been utilized
to (approximately) solve the resulting optimization problem in (2.1). Specif-
ically, I have focused on approaches for specifying the model which utilize
deep learning, as described next.

2.4 Deep Learning Approaches

Deep learning entails using a certain general class of parameterized functions
to specify fp : X — O, so-called deep neural networks (DNNs). These DNN
functions have a hierarchical structure with multiple layers, and typically con-
tain a large number of parameters # (often in the range of, at least, millions
of parameters). They are capable of modelling intricate relationships in the
data and of extracting predictive yet compact feature representations, also for
high-dimensional inputs x such as images, 3D point clouds or 12-lead ECGs.

DNNs can thus be used to automatically extract features from the inputs =,
i.e. to “learn” predictive feature representations directly from the data. During
the past decade or so, this entirely learning-based approach has been shown
to significantly outperform the traditional method — building machine learning
models on top of various hand-crafted feature representations — across a wide
range of applications within computer vision, natural language processing and
other domains.

The exact internal structure or architecture of the DNNs fy : X — O can vary
considerably, and numerous variations have been presented in the literature. In
this thesis, however, I have not put much focus on what specific DNN archi-
tecture one should use. Instead, I have mostly just viewed DNNs as high-level
parameterized functions fp that map inputs x to some type of output fy(z).
The regression methods which are studied in this thesis are in general entirely
independent of the specific choice of low-level DNN architecture.

Thus, I simply view a DNN as a function fy : X — O. I typically also di-
vide the DNN fy into a backbone feature extractor, and one or more smaller
network heads. The feature extractor takes = as input and outputs a feature
vector g(z) € RL of length L. This feature vector g(z) is then fed into the net-
work heads (typically consisting of a few fully-connected layers), producing
the final function output fy(x) € O. If the inputs = are images, the backbone
feature extractor can be specified by, e.g., taking a DNN used for image clas-
sification and removing its final softmax layer. In the thesis I have often used
ResNet [26] variants, as they are widely used across various applications, yet
simple to implement and quite computationally inexpensive. The modularity
of this approach, separating the backbone feature extractor from the network
heads, does however enable the use of any other backbone architecture (that
takes z as input and extracts a feature vector g(x)) as well.
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f(x)

Figure 2.1: Illustration of the most straightforward, deep direct regression approach.
The input x is fed into a backbone DNN (the first blue box) that extracts a feature vector
g(z) € RE (the gray box). This feature vector is then fed into a single small network
head (the second blue box), directly outputting a predicted target §j(x) = fo(x) for the
input x. The visualized input is from a regression problem where, given a synthetic
microscopy image x, the task is to predict the number of cells y in the image.

The most common and straightforward approach, called direct regression [20],
is to let the DNN directly output predicted targets, y(xz) = fp(x). This en-
tails feeding the input x to the feature extractor, and then feeding the fea-
ture vector into a single network head with a linear final layer, outputting
9(z) = fo(z). This direct regression approach is illustrated in Figure 2.1. The
DNN is “trained” by (approximately) finding the optimal model parameters 6*
in (2.1), for example using the L2 or L1 loss function for ¢( fo(z;), y;)-

From a probabilistic perspective, the choice of loss function corresponds to
minimizing the negative log-likelihood £(0) = S_N | — log p(y;|:; 0) for a
specific model p(y|z; #) of the conditional target distribution p(y|x). For ex-
ample, the L2 loss £(fo(z;),y:) = ||fo(xi) — yil|3 is derived from a fixed-
variance Gaussian model, p(y|z; 0) = N (y; fo(z), o*I). For the 1D case, this
can be seen from,

6* = argmin — log p(y;|z; 0)
0

= argmin — log NV (i3 fo (i), 07)
0

exp (—(fe(m)—?/)g» 2.2)

202

. 1
= argmin — log (
0 V2mo?
= argmin(fy(z;) — vi)*.
0
Similarly, the L1 loss can be derived from a fixed-variance Laplace distribu-
tion. By using the L2 or L1 loss functions, one is thus implicitly using quite

restrictive models p(y|x; @), which might fail to accurately represent the true
target distribution p(y|x) in various scenarios.

Probabilistic Regression

This probabilistic perspective can be extended and used to define a general
approach for deep regression: Use a DNN fp : X — O to specify a model
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W KH(x)
i) o(x)

Figure 2.2: Illustration of the deep probabilistic regression approach with a general
1D Gaussian model p(y|z;60) = N (y; po(x), o3(x)). The DNN outputs both the
Gaussian mean and variance as fy(z) = [pa(x) o2(x)]" € R2, by feeding the
feature vector into two separate network heads.

p(y|x; ) of the conditional target distribution, and minimize the corresponding
negative log-likelihood £(0) = Zf\; 1 — log p(y;|zi; 0) in order to train the
DNN. In this thesis, | have called this approach probabilistic regression.

Previous work has utilized this probabilistic regression approach to achieve
more flexible parametric models p(y|x; 0) = p(y; ¢g(x)), by letting the DNN
fo output the parameters ¢ of a family of probability distributions p(y; ¢) [27,
28, 29, 21, 22, 30, 31]. For example, a general 1D Gaussian model can be
realized as p(y|z; 0) = N (y; po(z), o3 (z)), where the DNN outputs both the
mean and variance as fy(z) = ¢p(z) = [pg(z) oF(x)]" € R% Minimizing
the negative log-likelihood £(0) = ZZ]\L 1 — log p(y;|z; 8) for this model is
equivalent to minimizing the following loss J(0),

N N 2
50) =3 tfolaw) = 3 U g2, @3)
i=1 1=1

which is used to train the DNN fy. To output both the mean () and vari-
ance ag(x), a second network head can be added to the DNN, as illustrated in
Figure 2.2. The output variance o5 () can also be taken as a natural estimate
of the aleatoric uncertainty (inherent noise and ambiguities in the data itself)
in the prediction, a topic I will return to in more detail in Chapter 4.

A general Gaussian model p(y|z;6) = N (y; po(2), of(x)) is however still
quite restrictive, in the sense that it is unable to capture e.g. multi-modal or
asymmetric true distributions p(y|x). To address this, previous work has for
example used mixture density networks (MDNs) [32] to specify the model
p(yl|x; 0) [23, 33, 34]. An MDN is a mixture of K components of a certain
base distribution. Specifically for a Gaussian MDN, the model p(y|x; ) is
defined according to,

(y|; 0) Z my @N (y; 1l (2), 037 (2)), (2.4)
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where the set of Gaussian mixture parameters {Wék), ,uék), aék)}szl is output
by the DNN fy. For example, a third network head can be added to the DNN

in order to output the mixture weights {Wék)}szl.

One potential issue with using MDNs to specify the model p(y|x; @) is that
the number of mixture components K needs to pre-determined before train-
ing. Previous work has thus also used infinite mixture models by applying the
conditional VAE (cVAE) framework [35, 36]. A latent variable model,

plylz:6) = / p(y: 60 2, 2))p(z; () d, 2.5)

is then employed to specify p(y|x; 6), where p(y; pg(x, z)) and p(z; pg(z) typ-
ically are Gaussian distributions.

Alternatively, one can instead use energy-based models (EBMs) [37] to spec-
ify the model p(y|x; §). EBMs are not restricted to the functional form of any
specific distribution (e.g. Gaussian or Laplace) and, in contrast to MDNs and
cVAESs, are not even limited to distributions which are simple to generate sam-
ples from. How EBMs can be used for probabilistic regression is described in
detail in Chapter 3.

Alternative Approaches

Another category of approaches reformulates the regression problem as g (z) =
argmax,, fp(,y), where fyo(z,y) € R is a scalar confidence value predicted
by the DNN [38, 39, 40, 41, 16, 42]. The idea is thus to predict a quantity
fo(x,y), depending on both input = and target y, that can be maximized over y
to obtain the final prediction y(x) for a given x. This line of research was the
main inspiration for our work on energy-based probabilistic regression.

A regression problem can also be treated as a classification problem by first dis-
cretizing the target space ) into a finite set of C' classes. Standard techniques
from classification, such as softmax and the cross-entropy loss, can then be
employed [43, 44, 45, 46, 24, 47, 48].

For a more detailed description of these two categories of alternative regression
approaches, and how they relate to energy-based probabilistic regression, |
refer to Section 2 in Paper L.
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Energy-Based Probabilistic
Regression

This chapter provides a further introduction specifically for the first track of
Paper I - Paper V, which focuses on how to develop accurate deep regression
models via energy-based probabilistic regression. This entails using energy-
based models to accurately represent the true conditional target distribution
p(y|x). The chapter mostly focuses on Paper I - Paper 111, as they propose the
general regression approach which then is applied to two specific applications
in Paper IV & V.

3.1 Background on Energy-Based Models

Energy-based models (EBMs) [37] have a rich history within the field of ma-
chine learning [49, 50, 51, 52, 53]. In general, an EBM specifies a probability
distribution p(x; ) over inputs = € X directly via a parameterized scalar func-
tion fp : X — R,

6fg($)
Z(0)

pai0) = o 2(60) = [ ehaz, G.1)

where Z(0) is the so-called normalizing partition function.

By defining the scalar energy function fy(x) using a DNN [54], the EBM
p(x; ) becomes expressive enough to learn practically any distribution from
observed data {z;}Y,. EBMs have therefore experienced a significant resur-
gence in recent years, commonly being employed for various generative mod-
elling tasks [55, 57, 58, 59, 60, 61, 62, 63, 64, 56].

EBMs p(z;6) = elo(®)/ J efo(®) 47 are highly expressive models, designed to
put minimaly restricting assumptions on the true distribution p(z). However,
they come with the significant drawback that the partition function Z(6) =
i efo() di generally is intractable, which complicates evaluating or sampling
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D~
A

Figure 3.1: Illustration ofa DNN fy : X' x ) — R used for energy-based probabilistic
regression, specifying the conditional EBM p(y|z;6) in (3.2). The DNN maps any
input-target pair (z,y) € X' x Y toascalar fp(z,y) € R. A feature vector is extracted
for both the input x and target y, these feature vectors are then combined into a single
vector and fed into a network head, that finally outputs fy(x,y) € R.

from the EBMs p(z; ). It can therefore be illustrative to contrast EBMs with
normalizing flows [65, 66, 67], which is another class of generative models.
While normalizing flows are specifically designed to be simple to both evaluate
and sample, EBMs instead prioritize maximum model expressivity.

3.2 Formulation

While EBMs recently had become increasingly popular within computer vision
when we started working on Paper I, they were basically only being employed
for generative modeling tasks. In Paper I, we therefore explored if EBMs could
be applied also to solve supervised regression problems. Specifically, we for-
mulated the energy-based probabilistic regression approach, which entails us-
ing a conditional EBM to specify a model p(y|z; ) of the conditional target
distribution,

efe(‘T’y)
Z(x,0)’

p(yla:0) = Z(a,0) = [ e (2)
where Z(x,0) is an input-dependent partition function. The conditional EBM
p(y|x; @) is thus directly specified via fy : X x J — R, a DNN that maps any
input-target pair (z,y) € X x ) to ascalar fp(z,y) € R.

For general regression problems, the DNN fp : X x ) — R can be defined by
extending the basic architecture illustrated in Figure 2.1. A backbone feature
extractor is still used to produce a feature vector g(z) € R” for the input z. A
small network head is then added to extract a feature vector h(y) € R also
for the target yy. These two feature vectors are then combined into one (e.g.
via concatenation) and fed into a second network head, that finally outputs the
scalar fy(x,y) € R. This DNN architecture is illustrated in Figure 3.1.
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3.3 Prediction

At test-time, the problem of predicting a target value y* from an input z* cor-
responds to finding a point estimate of the predicted conditional distribution
p(ylx*;0). In Paper I & 11, a prediction y* is output by finding the most likely
target under the model, y* = argmax,, p(y|z*; 0):

f9 (LL’* 1y)
y* = argmax p(y|z*; §) = arg max 67* = argmax fy(z*,y). (3.3)
Yy y  Z(x*,0) Y
The prediction y* is thus obtained by directly maximizing the DNN scalar out-
put fo(x*,y) w.rt. y. This does not require the partition function Z(z*,8) to
be evaluated, nor any samples from p(y|x*; #) to be generated.

In practice, y* = argmax, fy (z*,y) is approximated by refining an initial
estimate g via T steps of gradient ascent,

y < y+ AVyfo(z*,y), (3.4)

thus finding a local maximum of fy(z*, y). This prediction procedure is further
detailed in Algorithm 1, where A denotes the gradient ascent step-length, 7 is
a decay of the step-length and 7" is the number of iterations.

Algorithm 1 Prediction via gradient-based refinement.
Input: z*, 4, T, A\, n.

1y < 4.
2: fort=1,...,7 do

3: PrevValue « fy(z*,y).

4 g y+ AV, fo(z*,y).

5: NewValue < fy(z*, 7).

6: if NewValue > PrevValue then
7: Y 9.

8: else

9: A1

10: Return y.

3.4 Training

The DNN fy(z,y) that specifies the conditional EBM p(y|z;0) =
efo ("”’y)/ il efo(@9) dj can in principle be trained using the standard probabilis-
tic regression approach, i.e. by minimizing the corresponding negative log-
likelihood £(8) = S=N | —log p(y;|:; #). For the conditional EBM p(y|z; 0),
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the negative log-likelihood £(#) is given by,

N
L(0) = —logp(yila:;0)
=1
i | efe(%y%) (3 5)
= —108 T :
P fefs( uy)d/y
N
= log (/efe(x“y)dy> = Jo(@i, yi)-
i=1

While the integral in (3.5) is intractable, preventing exact evaluation of £(6),
it can be approximated using importance sampling. Specifically, £(6) can be

approximated using M samples {yl(m)}%:l ~ q(y) drawn from a proposal
distribution ¢(y),

N
L) = log (/6f9(xi’y)dy> — fo(zi, vi)

=1

S (/em,y) W) = o) GO
= Y - L, Yi .

— g a(¥) q\y)ay 0 Y

N M (m)

1 efe(l‘uyi )

~ Zlog <Zm> — fo(@i, yi)-

i=1 Mm:l Q(yf ))

This approximate negative log-likelihood in (3.6) was used to train the DNN
fo(z,y) in Paper L

Various alternative techniques had however been utilized to train EBMs for
generative modeling tasks in previous work, including noise contrastive esti-
mation (NCE) [68, 69], score matching [70, 71, 72] and Markov chain Monte
Carlo (MCMC) [73, 60, 59, 74]. How EBMs best should be trained specifi-
cally for regression problems remained an open question, which therefore was
studied in detail in Paper II. There, six different training methods were com-
pared on the task of 2D bounding box regression in images, concluding that a
simple extension of NCE should be considered the go-to approach.

Noise Contrastive Estimation

As its general principle, NCE entails learning to discriminate between observed
data examples and samples drawn from a noise distribution. NCE had been
used to train EBMs for classification tasks in the past [75, 76, 77, 78], and
had recently also become highly utilized within self-supervised representation
learning [79, 80, 81, 82].
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3.4. Training

Figure 3.2: Illustration of the NCE loss Jxcg(#) in (3.7) for a 2D bounding box regres-
sion example. NCE here entails learning to discriminate between the true bounding
box target y'”) 2 y; (left image) and M bounding boxes {yi(m) M| (right image)

7

which have been sampled from a noise distribution ¢(y) = + Zle N (y;yi, 021).

Using NCE to train the DNN fy(z, y) of the conditional EBM p(y|z; €) entails
minimizing the loss Jnce(6),

N
1 i
Ince(0) = N E JIEIC)E(G)a
i1

() (0) (3.7
i exp 1 fo zi,y; ) — logq(y;
T () = log — ooy ) @)

5> exp { fo(wi, 1™ — loga(y{"™)}

m=0

where yi(o) £ 4, and {ygm)}%':l are M samples drawn from a noise distri-

bution ¢(y). Effectively, Jycg(6) in (3.7) is the softmax cross-entropy loss

for a classification problem with M + 1 classes: Among the M + 1 values
{y(m) M (0)
7

m—o» correctly classify y, as the true target y;.

A simple choice for the noise distribution ¢(y), that was shown effective in
Paper 11, is using a mixture of K Gaussians centered at the true target y;,

K

a(y) = %ZN(y;yi,Uif), (3.8)

where K (the number of mixture components) and the variances {az}szl are

hyperparameters. The NCE loss Jncg(6) thus entails learning to discriminate

between the true target value y; and M values {yi(m) M_ .~ q(y) sampled

around y;. This is illustrated for a 2D bounding box regression example in

Figure 3.2, showing y; (red bounding box) in the left image and {ygm) %:1
(blue boxes) in the right image.
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3.5 Practical Limitations

In Paper I, the DNN fy(z,y) of the conditional EBM p(y|z; ) was trained
by approximating the negative log-likelihood £(6) = Z@]\L | — log p(yi|zi; 0)
using importance sampling according to (3.6). This corresponds to minimizing
the following loss J(6),

1Y 1
:N;10g< Z )

m=1 (yz )
{y§m)}%zl ~ q(y) (proposal distribution).

€f9 ( (m) )

> f@( z;yi)v (39)

In Paper II, the DNN was instead trained by minimizing the NCE loss Jncg/(6),

; 1 & exp{fe(fvi,ygo)) —logg(y!”)
NCE NZ )
i=1 eXp{fe (2, 9™) —logg(™)}  (3.10)

m=0

yZ(O) 2 i, {yZ }m 1 ~ q(y) (noise distribution).

In both cases, training thus requires samples {yZ )} _, to be drawn from a
proposal/noise distribution ¢(y). In both cases, the distribution ¢(y) was also
set to a mixture of K Gaussian components centered at the true target y;,

K
Z (43 yir o1 1).- (3.11)
k:

Consequently, the distribution ¢(y) contains hyperparameters K and {o7 }%
which need to be tuned for each specific regression problem. Moreover, g(y)
depends on the true target y; and can therefore only be utilized during training.
While the refinement-based method for producing predictions y* at test-time
that is employed in Paper I & II (Algorithm 1) is accurate, it does requires
access to good initial estimates g.

Paper Il aims to address both of these limitations, by jointly learning a pa-
rameterized proposal/noise distribution ¢(y|z; ¢) during EBM training. This
is achieved by deriving a convenient objective that can be employed to train
q(y|x; ¢) by directly minimizing its Kullback—Leibler (KL) divergence to the
EBM p(y|x; 0).

Since ¢(y|z; ¢) is conditioned only on the input z, it can be utilized also at
test-time. Moreover, as ¢(y|x; ¢) has been trained to approximate the EBM
p(y|z; 0), it can be used with self-normalized importance sampling [83] to ef-
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ficiently approximate expectations E,, w.r.t. the EBM p(y|z;0),

M

/E p(yla; 0)d w™e(y™),
m=1 (3.12)
eV gy s

Doy efe@r ) [q(yOl; 6)
By setting £(y) = v, (3.12) can be used to approximately compute the mean

value of the EBM p(y|z; ). In this manner, a stand-alone prediction y* for the
EBM can thus be produced.
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Uncertainty Estimation

This chapter provides a further introduction specifically for the second track
of Paper VI - Paper VIII, which focuses on how to develop reliable deep
regression models via uncertainty estimation.

4.1 Predictive Uncertainty Estimation using Bayesian
Deep Learning

DNNs fy : X — O have become the go-to approach within computer vision
and many other domains due to their impressive predictive power compared
to previous approaches. However, they generally fail to properly capture the
uncertainty inherent in their predictions. Estimating this predictive uncertainty
can be crucial, for example in medical and automotive applications.

The approach of Bayesian deep learning aims to address this issue in a princi-
pled manner [84, 27]. It deals with predictive uncertainty by decomposing it
into the distinct types of aleatoric and epistemic uncertainty. A/eatoric uncer-
tainty captures inherent and irreducible ambiguity in the data, while epistemic
uncertainty accounts for uncertainty in the DNN model parameters 6.

4.2 Aleatoric Uncertainty

Given an input z, it is not always obvious what the correct target value y should
be. For example, if a DNN has been trained to classify if images x contain
either a cat, dog or a bird, how should it classify an image that contains both
a cat and a dog? How about images with very low brightness, in which it is
difficult to recognize any objects at all? Or, what prediction §(z) should a
DNN trained for ECG-based electrolyte regression output for an ECG x that is
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Figure 4.1: Example of aleatoric uncertainty in the task of street-scene semantic seg-
mentation [85, 86]. Image pixels right at object boundaries are inherently more diffi-
cult to classify than pixels in the middle of objects.

severely corrupted by measurement noise? Aleatoric uncertainty captures this
type of irreducible ambiguity that can be present in the inputs x.

Input-dependent aleatoric uncertainty arises whenever the target y is expected
to be inherently more uncertain for some inputs « than others. This is true e.g.
in street-scene semantic segmentation, where image pixels at object boundaries
are inherently ambiguous. For the example image shown in Figure 4.1, pixels
right at the border between a vehicle and the road, for instance, will simply be
more difficult to classify for any model (or human) than pixels in the middle of
the road. This is true also in automotive 3D object detection, as illustrated in
Figure 4.2 which shows example sensor data in the form of a 3D point cloud.
Due to the limited sensor resolution, the estimated 3D position and size will
be inherently more uncertain for distant or partially occluded vehicles than for
clearly visible vehicles nearby.

To estimate input-dependent aleatoric uncertainty, the DNN fy : X — O
can be used to specify a model p(y|x; 0) of the conditional target distribution.
That is, one can employ the probabilistic regression approach. For example if
a Gaussian model is used, p(y|z; 0) = N (y; uo(z), o3 (z)), the DNN outputs
both a mean py(z) and variance o3(z) for each input z. The mean can be
taken as a prediction, §(z) = (), whereas the variance o3 (z) naturally can
be interpreted as a measure of aleatoric uncertainty for this prediction.

4.3 Epistemic Uncertainty
Using DNNSs to specify models p(y|x; #) of the conditional target distribution

does however not capture epistemic uncertainty, as information about the un-
certainty in the model parameters 6 is disregarded. Large epistemic uncertainty
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Figure 4.2: Example of aleatoric uncertainty in the task of automotive 3D object
detection [87, 15]. Based on given sensor data in the form of a 3D point cloud, it is
inherently more difficult to estimate the 3D position and size of distant or partially
occluded vehicles than for clearly visible vehicles nearby.

is present whenever a large set of model parameters explains the given training
data (approximately) equally well. This is often the case for DNNs, since the
corresponding optimization landscapes are highly multi-modal [88, 89].

Disregarding this epistemic model uncertainty often leads to highly confident
yet incorrect DNN predictions, especially for inputs x which are not well-
represented by the training distribution [90, 28]. For instance, a DNN can fail
to generalize to unfamiliar weather conditions or environments in automotive
applications, but still generate confident predictions.

Epistemic uncertainty can be estimated in a principled manner by perform-
ing Bayesian inference. Instead of just finding a single point estimate 6* of
the model parameters 6, by minimizing the negative log-likelihood £(0) =
Zf\il —log p(yi|ws; 0) over the training set D = {(;, y;) })v,, Bayesian infer-
ence entails estimating the full posterior distribution p(6|D). This posterior is
obtained from the data likelihood Hi\il p(yi|zi; 0) and a chosen prior p(#) by
applying Bayes’ theorem. The posterior p(6|D) is then utilized to obtain the

47



Chapter 4. Uncertainty Estimation

predictive posterior distribution p(y|z, D),

p(ylz, D) = / Pyl 0)p(6]D)do
M 4.1
Z plylz; 60™), 6" ~ p(6|D),
m:l

which captures both aleatoric and epistemic uncertainty. In practice, obtain-
ing samples from the true posterior p(0|D) is virtually impossible for DNNs,
requiring an approximate posterior ¢(6) ~ p(6|D) to be used instead.

4.4 Tllustrative Example

To provide intuition for how predictive uncertainty can be estimated using
DNN:ss, let us consider the simple 1D problem of regressing a sinusoid cor-
rupted by input-dependent Gaussian noise. The true conditional target distri-
bution p(y|z) is given by,

plylz) = N (y; p(x), 0% (),
p(z) =sin(z), o(z)=0.15(1+e %)L,
which is visualized in Figure 4.3a. There, the mean p(z) = sin(x) is given
by the solid black line and the variance o(x) is represented in shaded gray.

Training data {(;, y;) }229° of N = 1000 input-target pairs is only generated
for the interval = € [—3, 3], as visualized in Figure 4.3b.

4.2)

A DNN trained to directly output predicted targets, y(x) = fy(x), is able
to accurately regress the mean p(x) = sin(z) for z € [—3, 3], as shown in
Figure 4.3¢c. However, this model fails to capture any notion of uncertainty.

Instead, the DNN can be used to specify a Gaussian model p(y|z;0) =
N (y; po(z), og (1:)) , trained by minimizing the negative log-likelihood (NLL)
L(0) = Zfil —log p(yi|zi; 0). As shown in Figure 4.3d, the model p(y|z; 6)
closely matches the true p(y|x) for z € [—3, 3] and thus correctly accounts for
aleatoric uncertainty. For inputs |x| > 3 not seen during training, however,
the estimated mean 1 (x) deviates significantly from the true pu(x) = sin(x),
while the estimated uncertainty o (z) remains very small. That is, the model
becomes overconfident for inputs |x| > 3.

The Gaussian DNN model p(y|z;0) = N (y; po(z), o5 (x)) can instead be
estimated via approximate Bayesian inference (4.1), in order to account for
both aleatoric and epistemic uncertainty. Specifically, a prior distribution
p(6) = N(0,Ip) and M = 1000 samples {#("™)}M_ obtained via Hamilto-
nian Monte Carlo (HMC) [91] is used in (4.1). In this case, the model p(y|x; 0)
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. i \/\\/ ‘
-2 -2
3 -3
(a) True data generator p(y|x). (b) Training dataset {(z;, y;) }129°.
3 3

(c) Direct regression, §(x) = fo(x). ) p(y|z; 0) = N(y; po(x), o3 (x )
Trained using the L2 loss. Trained by minimizing the NLL £(0).

(e) Approx. Bayesian inference (4.1): (f) Approx. Bayesian inference (4.1):
HMC [91], M = 1000. Ensembling, M = 16.

Figure 4.3: Simple 1D regression problem that illustrates how predictive uncertainty
can be estimated using DNNs. The predictive mean and variance of the DNN model
are given by the solid red line and the shaded red area, respectively.
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predicts a more reasonable uncertainty o3 (x) in the region with no available
training data, as shown in Figure 4.3e. While the estimated mean pg(z) still
deviates from the true p(z) = sin(z) for |x| > 3, the uncertainty o3 (z) also
increases accordingly — the model does nof become overconfident.

While HMC is considered a “gold standard” method for approximate Bayesian
inference, it does not scale well to the large DNNs used in real-world ap-
plications. In practice, among scalable alternatives, it has been shown diffi-
cult to beat the simple approach of ensembling [28, 92]. This entails train-
ing M identical DNNs by repeatedly minimizing the negative log-likelihood
L(8) = Zf\;l — log p(yi|zi; 0) with random initialization. This gives M point
estimates {#(") }M_ of the DNN model parameters, which can be used as ap-
proximate samples in (4.1). As can be observed in Figure 4.3f, ensembling
provides a good approximation of HMC in this illustrative example, even for
relatively small values of M.

In Paper VI, the ensembling approach is extensively compared with another
commonly used scalable method for epistemic uncertainty estimation: MC-
dropout [84, 27, 93]. The results of this comparison demonstrate that ensem-
bling consistently provides more reliable and useful estimates of predictive
uncertainty. In Paper VII, ensembling and other uncertainty estimation meth-
ods are then further evaluated, critically examining their reliability under real-
world distribution shifts.
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Concluding Remarks

This chapter, which is meant to be read after the included papers, contains
concluding reflections along with an outlook on possible future work.

5.1 Conclusion

This thesis studied open questions related to how deep regression models
should be constructed for best possible accuracy, and how the uncertainty in
their predictions should be represented and estimated. By studying these is-
sues, it aimed to help take steps towards an ultimate goal of developing deep
regression models which are both accurate and reliable enough for real-world
deployment within medical applications and other safety-critical domains. The
two aspects of accuracy and reliability were studied in two different tracks of
papers, each constituting one main contribution.

The first main contribution of the thesis is the formulation and development of
energy-based probabilistic regression in Paper 1 - Paper I11. This is a general
and conceptually simple regression framework with a clear probabilistic inter-
pretation, using EBMs to model the true conditional target distribution p(y|z).
The framework was formulated and initially evaluated in Paper I. A compre-
hensive study of how the EBMs should be trained for best possible regression
performance was then conducted in Paper II, and some practical limitations
of the approach were finally addressed in Paper III. The framework has been
applied to a number of regression problems, demonstrating particularly strong
performance for 2D bounding box regression — improving the state-of-the-art
when applied to the task of visual tracking.

The second main contribution of the thesis is the critical evaluation of vari-
ous uncertainty estimation methods conducted in Paper VI & VII. A general
introduction to the problem of estimating the predictive uncertainty of deep
models was provided in Paper VI, together with the first extensive compari-
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son of ensembling and MC-dropout — demonstrating that ensembling consis-
tently produces uncertainty estimates of higher quality. In Paper VII, ensem-
bling and other regression uncertainty estimation methods were then further
evaluated, specifically examining their reliability under real-world distribution
shifts. This evaluation uncovered important limitations of current methods and
serves as a challenge to the research community. It demonstrates that more
work is required in order to develop truly reliable uncertainty estimation meth-
ods for regression.

5.2 Future Work

For energy-based probabilistic regression, a problem that could be further stud-
ied is how to produce accurate predictions at test-time without requiring the use
of relatively time-consuming gradient-based refinement. While the technique
presented in Paper III (approximately computing the EBM mean value using
importance sampling) produces stand-alone predictions, they are generally not
as accurate as those produced by the refinement-based approach.

Another interesting direction is to further study why energy-based probabilistic
regression has achieved particularly strong performance specifically for bound-
ing box regression. The fact that functions fy : X x ) — R naturally can be
defined via pooling operations for these problems is likely a contributing fac-
tor. It would thus be interesting to explore if the quite straightforward DNN
architecture used for general regression problems, as illustrated in Figure 3.1,
perhaps could be modified in order to improve the performance. It is not obvi-
ous how the input images x should be combined with the targets y, defining a
joint function fy : A x Y — R, in this general setting.

As demonstrated by both Paper VII & VIII, more work is still required in order
to develop truly reliable regression uncertainty estimation methods. One par-
ticularly interesting direction is to study the clear performance difference be-
tween synthetic and real-world datasets that was observed for selective predic-
tion methods in Paper VII. For instance, alternative uncertainty scores from the
out-of-distribution detection literature (e.g., reconstruction-based approaches)
could be evaluated within the selective prediction framework. Another inter-
esting direction is to explore if self-supervised learning techniques or vision-
language models perhaps could be utilized to learn feature representations
which are more robust to real-world distribution shifts.
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Energy-Based Models for
Deep Probabilistic Regression

Abstract

While deep learning-based classification is generally tackled using standard-
ized approaches, a wide variety of techniques are employed for regression. In
computer vision, one particularly popular such technique is that of confidence-
based regression, which entails predicting a confidence value for each input-
target pair (z,y). While this approach has demonstrated impressive results,
it requires important task-dependent design choices, and the predicted confi-
dences lack a natural probabilistic meaning. We address these issues by propos-
ing a general and conceptually simple regression method with a clear proba-
bilistic interpretation. In our proposed approach, we create an energy-based
model of the conditional target density p(y|x), using a deep neural network to
predict the un-normalized density from (z, y). This model of p(y|x) is trained
by directly minimizing the associated negative log-likelihood, approximated
using Monte Carlo sampling. We perform comprehensive experiments on four
computer vision regression tasks. Our approach outperforms direct regression,
as well as other probabilistic and confidence-based methods. Notably, our
model achieves a 2.2% AP improvement over Faster-RCNN for object detec-
tion on the COCO dataset, and sets a new state-of-the-art on visual tracking
when applied for bounding box estimation. In contrast to confidence-based
methods, our approach is also shown to be directly applicable to more gen-
eral tasks such as age and head-pose estimation. Code is available at https:
//github.com/fregu856/ebms regression.

1 Introduction

Supervised regression entails learning a model capable of predicting a contin-
uous target value y from an input x, given a set of paired training examples.
It is a fundamental machine learning problem with many important applica-
tions within computer vision and other domains. Common regression tasks
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Figure 1: An overview of the proposed regression method (top). We train an energy-
based model p(y|x; 0) o efe(*¥) of the conditional target density p(y|z), using a DNN
fo to predict the un-normalized density directly from the input-target pair (z,y). Our
approach is capable of predicting highly flexible densities and produce highly accurate
estimates. This is demonstrated for the problem of bounding box regression (bottom),
visualizing the marginal density for the top right box corner as a heatmap.

within computer vision include object detection [1, 2, 3, 4], head- and body-
pose estimation [5, 6, 7, 8], age estimation [9, 10, 11], visual tracking [12, 13,
14, 15] and medical image registration [16, 17], just to mention a few. Today,
such regression problems are commonly tackled using Deep Neural Networks
(DNNSs), due to their ability to learn powerful feature representations directly
from data.

While classification is generally addressed using standardized losses and out-
put representations, a wide variety of different techniques are employed for
regression. The most conventional strategy is to train a DNN to directly pre-
dict a target y given an input = [18]. In such direct regression approaches,
the model parameters of the DNN are learned by minimizing a loss function,
for example the L? or L' loss, penalizing discrepancy between the predicted
and ground truth target values. From a probabilistic perspective, this approach
corresponds to creating a simple parametric model of the conditional target
density p(y|z), and minimizing the associated negative log-likelihood. The
L? loss, for example, corresponds to a fixed-variance Gaussian model. More
recent work [19, 20, 21, 22, 23, 24] has also explored learning more expressive
models of p(y|z), by letting a DNN instead output the full set of parameters of
a certain family of probability distributions. To allow for straightforward im-
plementation and training, many of these probabilistic regression approaches
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Figure 2: Anillustrative 1D regression problem. The training data D = {(z;, y;) }2°9°

is generated by the ground truth conditional target density p(y|z). Our energy-based
model p(y|z; ) o< efo(®¥) of p(y|z) is trained by directly minimizing the associated
negative log-likelihood, approximated using Monte Carlo importance sampling. In
contrast to the Gaussian model p(y|z;60) = N (y; ug(z), 03 (x)), our energy-based

model can learn multimodal and complex target densities directly from data.

however restrict the parametric model to unimodal distributions such as Gaus-
sian [20, 21] or Laplace [19, 22, 25], still severely limiting the expressiveness
of the learned conditional target density. While these methods benefit from a
clear probabilistic interpretation, they thus fail to fully exploit the predictive
power of the DNN.

The quest for improved regression accuracy has also led to the development of
more specialized methods, designed for a specific set of tasks. In computer vi-
sion, one particularly popular approach is that of confidence-based regression.
Here, a DNN instead predicts a scalar confidence value for input-target pairs
(z,y). The confidence can then be maximized w.r.t. y to obtain a target pre-
diction for a given input . This approach is commonly employed for image-
coordinate regression tasks within e.g. human pose estimation [5, 6, 7] and
object detection [3, 4], where a 2D heatmap over image pixel coordinates y is
predicted. Recently, the approach was also applied to the problem of bounding
box regression by Jiang et al. [2]. Their proposed method, IoU-Net, obtained
state-of-the-art accuracy on object detection, and was later also successfully
applied to the task of visual tracking [15]. The training of such confidence-
based regression methods does however entail generating additional pseudo
ground truth labels, e.g. by employing a Gaussian kernel [26, 6], and select-
ing an appropriate loss function. This both requires numerous design choices
to be made, and limits the general applicability of the methods. Moreover,
confidence-based regression methods do not allow for a natural probabilistic
interpretation in terms of the conditional target density p(y|x). In this work, we
therefore set out to develop a method combining the general applicability and
the clear interpretation of probabilistic regression with the predictive power of
the confidence-based approaches.

Contributions We propose a general and conceptually simple regression
method with a clear probabilistic interpretation. Our method employs an
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energy-based model [27] to predict the un-normalized conditional target den-
sity p(y|x) from the input-target pair (z, y). Itis trained by directly minimizing
the associated negative log-likelihood, exploiting tailored Monte Carlo approx-
imations. At test time, targets are predicted by maximizing the conditional
target density p(y|x) through gradient-based refinement. Our energy-based
model is straightforward both to implement and train. Unlike commonly used
probabilistic models, it can however still learn highly flexible target densities
directly from data, as visualized in Figure 2. Compared to confidence-based
approaches, our method requires no pseudo labels, benefits from a clear prob-
abilistic interpretation, and is directly applicable to a variety of computer vi-
sion applications. We evaluate the proposed method on four diverse computer
vision regression tasks: object detection, visual tracking, age estimation and
head-pose estimation. Our method is found to significantly outperform both
direct regression baselines, and popular probabilistic and confidence-based al-
ternatives, including the state-of-the-art IoU-Net [2]. Notably, our method
achieves a 2.2% AP improvement over FPN Faster-RCNN [28] when applied
for object detection on COCO [29], and sets a new state-of-the-art on standard
benchmarks [30, 31] when applied for bounding box estimation in the recent
ATOM [15] visual tracker. Our method is also shown to be directly applica-
ble to the more general tasks of age and head-pose estimation, consistently
improving performance of a variety of baselines.

2 Background & Related Work

In supervised regression, the task is to learn to predict a target value y* € Y
from a corresponding input z* € X, given a training set of i.i.d. input-target
examples, D = { (s, v:)}}Vq, (zi,9:) ~ p(z,y). As opposed to classification,
the target space ) is a continuous set, e.g. ) = RE. In computer vision, the
input space X’ often corresponds to the space of images, whereas the output
space ) depends on the task at hand. Common examples include ) = R?
in image-coordinate regression [6, 3], J = R in age estimation [9, 10], and
Y = R* in object bounding box regression [1, 2]. A variety of techniques have
previously been applied to supervised regression tasks. In order to motivate
and provide intuition for our proposed method, we here describe a few popular
approaches.

Direct Regression Over the last decade, DNNs have been shown to excel
at a wide variety of regression problems. Here, a DNN is viewed as a func-
tion fg : U — O, parameterized by a set of learnable weights § € R”. The
most conventional regression approach is to train a DNN to directly predict
the targets, y* = fy(a*), called direct regression. The model parameters 6 are
learned by minimizing a loss ¢( fo(z;), y;) that penalizes discrepancy between
the prediction fy(z;) and the ground truth target value y; on training examples
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(w;,;). Common choices include the L? loss, £(,y) = || — y||3, the L*
loss, ¢(9,y) = ||y — yl/1, and their close relatives [32, 18]. From a proba-
bilistic perspective, the choice of loss corresponds to minimizing the negative
log-likelihood — log p(y|x; @) for a specific model p(y|z; #) of the conditional
target density. For example, the L? loss is derived from a fixed-variance Gaus-
sian model, p(y|z; 0) = N (y; fo(x), o?).

Probabilistic Regression More recent work [19, 20, 21, 22, 25, 33, 23]
has explicitly taken advantage of this probabilistic perspective to achieve
more flexible parametric models p(y|z;0) = p(y;pg(z)), by letting the
DNN output the parameters ¢ of a family of probability distributions p(y; ¢).
For example, a general 1D Gaussian model can be realized as p(y|z;0) =
N (y; po(z), o3(x)), where the DNN outputs the mean and log-variance as
fo(x) = ¢o(z) = [pg(x) logos(z)]T € R2. The model parameters 6 are
learned by minimizing the negative log-likelihood — Zf\i 1 log p(yi|xs; 6) over
the training set D. At test time, a target estimate y* is obtained by first pre-
dicting the density parameter values ¢g(z*) and then, for instance, taking the
expected value of p(y; ¢g(x)). Previous work has applied simple Gaussian and
Laplace models on computer vision tasks such as object detection [34, 35] and
optical flow estimation [22, 25], usually aiming to not only achieve accurate
predictions, but also to provide an estimate of aleatoric uncertainty [19, 36]. To
allow for multimodal models p(y; ¢g(x)), mixture density networks (MDN5s)
[37] have also been applied [33, 23]. The DNN then outputs weights for K
mixture components along with K sets of parameters, e.g. K sets of means
and log-variances for a mixture of Gaussians. Previous work has also applied
infinite mixture models by utilizing the conditional VAE (¢VAE) framework
[38, 24]. A latent variable model p(y|z;0) = [ p(y; ¢o(x, 2))p(z; pg(z))dz
is then employed, where p(y; ¢g(x, 2)) and p(z; pg(x) typlcally are Gaussian
distributions. Our proposed method also entails predicting a conditional target
density p(y|z; 8) and minimizing the associated negative log-likelihood. How-
ever, our energy-based model p(y|z; 6) is not limited to the functional form of
any specific probability density (e.g. Gaussian or Laplace), but is instead di-
rectly defined via a learned scalar function of (x, y). In contrast to MDNs and
cVAEs, our model p(y|z; #) is not even limited to densities which are simple
to generate samples from. This puts minimal restricting assumptions on the
true p(y|x), allowing it to be efficiently learned directly from data.

Confidence-Based Regression Another category of approaches reformulates
the regression problem as y* = argmax, fo(x,y), where fo(z,y) € Ris
a scalar confidence value predicted by the DNN. The idea is thus to predict
a quantity fy(z,y), depending on both input x and target y, that can be maxi-
mized over y to obtain the final prediction y*. This maximization-based formu-
lation is inherent in Structural SVMs [39], but has also been adopted for DNNs.
We term this family of approaches confidence-based regression. Compared
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to direct regression, the predicted confidence fy(z,y) can encapsulate multi-
ple hypotheses and other ambiguities. Confidence-based regression has been
shown particularly suitable for image-coordinate regression tasks, such as hand
keypoint localization [40] and body-part detection [26, 41, 6]. In these cases,
a CNN is trained to output a 2D heatmap over the image pixel coordinates ,
thus taking full advantage of the translational invariance of the problem. In
computer vision, confidence prediction has also been successfully employed
for tasks other than pure image-coordinate regression. Jiang et al. [2] proposed
the IoU-Net for bounding box regression in object detection, where a bounding
box y € R* and image x are both input to the DNN to predict a confidence
fo(x,y). It employs a pooling-based architecture that is differentiable w.r.t.
the bounding box y, allowing efficient gradient-based maximization to obtain
the final estimate y* = arg max,, fo(z,y). IoU-Net was later also successfully
applied to target object estimation in visual tracking [15].

In general, confidence-based approaches are trained using a set of pseudo la-
bel confidences c(z;,y;,y) generated for each training example (x;, y;), and
by employing a loss €( fo(xs,y), c(4,yi,y)). One strategy [41, 3] is to treat
the confidence prediction as a binary classification problem, where c¢(x;, y;, y)
represents either the class, ¢ € {0, 1}, or its probability, ¢ € [0, 1], and employ
cross-entropy based losses £. The other approach is to treat the confidence pre-
diction as a direct regression problem itself by applying standard regression
losses, such as L? [40, 15, 26] or the Huber loss [2]. In these cases, the pseudo
label confidences c can be constructed using a similarity measure .S in the tar-
get space, c(z;, yi, y) = S(y, y;), for example defined as the Intersection over
Union (IoU) between two bounding boxes [2] or simply by a Gaussian ker-
nel [26, 6, 7].

While these methods have demonstrated impressive results, confidence-based
approaches thus require important design choices. In particular, the strategy
for constructing the pseudo labels ¢ and the choice of loss £ are often crucial for
performance and highly task-dependent, limiting general applicability. More-
over, the predicted confidence fy(z, y) can be difficult to interpret, since it has
no natural connection to the conditional target density p(y|z). In contrast, our
approach is directly trained to predict p(y|z) itself, and importantly it does not
require generation of pseudo label confidences or choosing a specific loss.

Regression-by-Classification A regression problem can also be treated as a
classification problem by first discretizing the target space ) into a finite set
of C classes. Standard techniques from classification, such as softmax and
the cross-entropy loss, can then be employed. This approach has previously
been applied to both age estimation [9, 10, 42] and head-pose estimation [43,
8]. The discretization of the target space ) however complicates exploiting its
inherent neighborhood structure, an issue that has been addressed by exploring
ordinal regression methods for 1D problems [11, 44]. While our energy-based
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approach can be seen as a generalization of the softmax model for classification
to the continuous target space ), it does not suffer from the aforementioned
drawbacks of regression-by-classification. On the contrary, our model natu-
rally allows the network to exploit the full structure of the continuous target
space V.

Energy-Based Models Our approach is of course also related to the theoret-
ical framework of energy-based models, which often has been employed for
machine learning problems in the past [45, 46, 27]. It involves learning an en-
ergy function & (z) € R that assigns low energy to observed data z; and high
energy to other values of . Recently, energy-based models have been used
primarily for unsupervised learning problems within computer vision [47, 48,
49, 50, 51], where DNNss are directly used to predict £y (). These models are
commonly trained by minimizing the negative log-likelihood, stemming from
the probabilistic model p(x;0) = e~ @)/ [ e=€(*)dy, for example by gen-
erating approximate image samples from p(x; 6) using Markov Chain Monte
Carlo [48, 49, 51]. In contrast, we study the application of energy-based mod-
els for p(y|z) in supervised regression, a mostly overlooked research direction
in recent years, and obtain state-of-the-art performance on four diverse com-
puter vision regression tasks.

3 Proposed Regression Method

We propose a general and conceptually simple regression method with a clear
probabilistic interpretation. Our method employs an energy-based model
within a probabilistic regression formulation, defined in Section 3.1. In Sec-
tion 3.2, we introduce our training strategy which is designed to be simple,
yet highly effective and applicable to a wide variety of regression tasks within
computer vision. Lastly, we describe our prediction strategy for high accuracy
in Section 3.3.

3.1 Formulation

We take the probabilistic view of regression by creating a model p(y|z; 6) of
the conditional target density p(y|z), in which 6 is learned by minimizing the
associated negative log-likelihood. Instead of defining p(y|z;6) by letting a
DNN predict the parameters of a certain family of probability distributions (e.g.
Gaussian or Laplace), we construct a versatile energy-based model that can
better leverage the predictive power of DNNSs. To that end, we take inspiration
from confidence-based regression approaches and let a DNN directly predict a
scalar value for any input-target pair (x, y). Unlike confidence-based methods
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however, this prediction has a clear probabilistic interpretation. Specifically,
we view a DNN as a function fy : X x ) — R, parameterized by § € R”,
that maps an input-target pair (z,y) € X x ) to a scalar value fy(z,y) € R.
Our model p(y|x; 6) of the conditional target density p(y|x) is then defined
according to,

polest) = S, ZG@) = [ FDay, n
where Z(z, 0) is the input-dependent normalizing partition function. We train
this energy-based model (1) by directly minimizing the negative log-likelihood
—logp({wyi}il{zi}i;0) = >_;; —logp(yi|xi; 0), where each term is given by,

<4%mm@ﬂwﬂ%(/demQ—ﬁ@Mm. @)

This direct and straightforward training approach thus requires the evaluation
of the generally intractable Z(xz,0) = [ efe(*¥) dy. Many fundamental com-
puter vision tasks, such as object detection, keypoint estimation and pose es-
timation, however rely on regression problems with a low-dimensional target
space ). In such cases, effective finite approximations of Z(z, ) can be ap-
plied. In some tasks, such as image-coordinate regression, this is naturally
performed by a grid approximation, utilizing the dense prediction obtained by
fully-convolutional networks. In this work, we however investigate a more
generally applicable technique, namely Monte Carlo approximations with im-
portance sampling. This procedure, when employed for training the network,
is detailed in Section 3.2.

At test time, given an input x*, our model in (1) allows evaluating the condi-
tional target density p(y|z*; #) for any target y by first approximating Z(x*, 6),
and then predicting the scalar fy(z*,y) using the DNN. This enables the com-
putation of, e.g., the mean and variance of the target value y. In this work,
we take inspiration from confidence-based regression and focus on finding the
most likely prediction, y* = argmax, p(y|z*; ) = argmax,, fp(x*,y), which
does not require the evaluation of Z(x*,#) during inference. Thanks to the
auto-differentiation capabilities of modern deep learning frameworks, we can
apply gradient-based techniques to find the final prediction by simply maxi-
mizing the network output fy(z*,y) w.r.t. y. We elaborate on this procedure
for prediction in Section 3.3.

3.2 Training

Our energy-based model p(y|z;0) = ef*@¥) /Z(x ) of the conditional
target density is trained by directly minimizing the negative log-likelihood
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sz\i 1 — log p(yi|xi; §). To evaluate the integral in (2), we employ Monte Carlo
importance sampling. Each term — log p(y;|x;; €) is therefore approximated by
sampling values {y(®}M | from a proposal distribution ¢(y|y;) that depends

on the ground truth target value y;,

M (k)
efo(ziy™)

—log p(ys|xi; 0) 108( Z

> — fo(xi, yi)- 3)
= aly®ly:)

The final loss J(€) used to train the DNN fj is then obtained by averaging over
all training examples {(z;, ;) }""_; in the current mini-batch,

1 & 1 &
:n;bg(MZ

= alytmly;)

efQ(‘Thy(iﬂn))

> — fo(wi, yi), “4)

where {y®™}M_, are M samples drawn from g(y|y;). Qualitatively, min-

imizing J () encourages the DNN to output large values fy(z;,y;) for the
ground truth target y;, while minimizing the predicted value fy(x;,y) at all
other targets y. In ambiguous or uncertain cases, the DNN can output small
values everywhere or large values at multiple hypotheses, but at the cost of a
higher loss.

As can be seen in (4), the DNN fy is applied both to the input-target pair (x;, ;),
and all input-sample pairs {(z;, y*™)}M_, during training. While this can
seem inefficient, most applications in computer vision employ network archi-
tectures that first extract a deep feature representation for the input x;. The
DNN fy can thus be designed to combine this input feature with the target y
at a late stage, as visualized in Figure 1. The input feature extraction process,
which becomes the main computational bottleneck, therefore needs to be per-
formed only once for each x;. In practice, we found our training strategy to not
add any significant overhead compared to the direct regression baselines, and
the computational cost to be identical to that of the confidence-based methods.

Compared to confidence-based regression, a significant advantage of our ap-
proach is however that there is no need for generating task-dependent pseudo
label confidences or choosing between different losses. The only design choice
of our training method is the proposal distribution ¢(y|y;). Note however that
since the loss J(#) in (4) explicitly adapts to g(y|y;), this choice has no ef-
fect on the overall behaviour of the loss, only on the quality of the sampled
approximation. We found a mixture of a few equally weighted Gaussian com-
ponents, all centered at the target label y;, to consistently perform well in our
experiments across all four diverse computer vision applications. Specifically,

q(yly;) is set to,

1 L

a(yly:) = ZZN(y;ymff), Q)

=1
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where the standard deviations {o;}-_; are hyperparameters selected based on
a validation set for each experiment. We only considered the simple Gaussian
proposal in (5), as this was found sufficient to obtain state-of-the-art exper-
imental results. Full ablation studies for the number of components L and
{O‘l}lel are provided in the supplementary material. Figure 2 illustrates that
our model p(y|z; #) can learn complex conditional target densities, containing
both multi-modalities and asymmetry, directly from data using the described
training procedure. In this illustrative example, we use (5) with L = 2 and
o1 =0.1,00 =0.8.

3.3 Prediction

Given an input x* at test time, the trained DNN fy can be used to evaluate
the full conditional target density p(y|z*; ) = e/*(®"¥) / Z(2*, 0), by employ-
ing the aforementioned techniques to approximate the constant Z(z*, ). In
many applications, the most likely prediction y* = arg max,, p(y|z*; 0) is how-
ever the single desired output. For our energy-based model, this is obtained
by directly maximizing the DNN output, y* = argmax, fp(z*,y), thus not
requiring Z(z*,0) to be evaluated. By taking inspiration from IoU-Net [2]
and designing the DNN fy to be differentiable w.r.t. the target y, the gra-
dient V, fo(x*,y) can be efficiently evaluated using the auto-differentiation
tools implemented in modern deep learning frameworks. An estimate of
y* = argmax, fy(z*,y) can therefore be obtained by performing gradient
ascent to find a local maximum of fy(x*, y).

The gradient ascent refinement is performed either on a single initial estimate
g, or on a set of random initializations {J}/_, to obtain a final accurate
prediction y*. Starting at y = g, we thus run 7" gradient ascent iterations,
y < y+ AV, fo(z*,y), with step-length A. In our experiments, we fix 1" (typ-
ically, 7' = 10) and select A using grid search on a validation set. As noted
in Section 3.2, this prediction procedure can be made highly efficient by ex-
tracting the feature representation for z* only once. Back-propagation is then
performed only through a few final layers of the DNN to evaluate the gradient
Vyfo(z*,y). The gradient computation for a set of candidates {gjk}szl can
also be parallelized on the GPU by simple batching, requiring no significant
overhead. Overall, the inference speed is somewhat decreased compared to
direct regression baselines, but is identical to confidence-based methods such
as IoU-Net [2]. An algorithm detailing this prediction procedure is found in
the supplementary material.
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Table 1: Impact of L and {0, } _, in the proposal distribution ¢(y|y;) (5), for the object
detection task on the 2017 val split of the COCO [29] dataset. For L = 2, 01 = 09/4.
For L = 3,01 = 03/4 and 09 = 03/2. L = 3 with o, = 0.15 is selected.

Number of components L 1 2 3
Base proposal st. dev. o, 0.02 0.04 0.08 0.1 0.15 02 0.1 0.15 0.2
AP (%) 38.1 38.5 37.5 39.0 39.1 39.0 39.0 39.1 38.8

Table 2: Results for the object detection task on the 2017 test-dev split of the
COCO [29] dataset. Our proposed method significantly outperforms the baseline FPN
Faster-RCNN [28] and the state-of-the-art confidence-based IoU-Net [2].

Formulation Direct Gaussian  Gaussian Gaussian  Gaussian  Gaussian Laplace Confidence Confidence
Approach Faster-RCNN Mixt. 2 Mixt. 4 Mixt. 8 cVAE ToU-Net ToU-Net*  Ours
AP (%) 372 36.7 37.1 37.0 36.8 372 37.1 383 382 39.4
APso(%) 59.2 58.7 59.1 59.1 59.1 59.2 59.1 58.3 58.4 58.6
AP75(%) 40.3 39.6 40.0 39.9 39.7 40.0 40.2 41.4 41.4 4.1
FPS 12.2 12.2 12.2 12.1 12.1 9.6 12.2 53 53 53

4 Experiments

We perform comprehensive experiments on four different computer vision re-
gression tasks: object detection, visual tracking, age estimation and head-pose
estimation. Our proposed approach is compared both to baseline regression
methods and to state-of-the-art models. Notably, our method significantly
outperforms the confidence-based IoU-Net [2] method for bounding box re-
gression in direct comparisons, both when applied for object detection on the
COCO dataset [29] and for target object estimation in the recent ATOM [15]
visual tracker. On age and head-pose estimation, our approach is shown to con-
sistently improve performance of a variety of baselines. All experiments are
implemented in PyTorch [52]. For all tasks, further details are also provided
in the supplementary material.

4.1 Object Detection

We first perform experiments on object detection, the task of classifying and
estimating a bounding box for each object in a given image. Specifically, we
compare our regression method to other techniques for the task of bounding
box regression, by integrating them into an existing object detection pipeline.
To this end, we use the Faster-RCNN [1] framework, which serves as a pop-
ular baseline in the object detection field due to its strong state-of-the-art per-
formance. It employs one network head for classification and one head for
regressing the bounding box using the direct regression approach. We also in-
clude various probabilistic regression baselines and compare with simple Gaus-
sian and Laplace models, by modifying the Faster-RCNN regression head to
predict both the mean and log-variance of the distribution, and adopting the as-
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sociated negative log-likelihood loss. Similarly, we compare with mixtures of
K = {2,4, 8} Gaussians by duplicating the modified regression head K times
and adding a network head for predicting K component weights. Moreover,
we compare with an infinite mixture of Gaussians by training a cVAE. Finally,
we also compare our approach to the state-of-the-art confidence-based IoU-
Net [2]. It extends Faster-RCNN with an additional branch that predicts the
IoU overlap between a target bounding box y and the ground truth. The IoU
prediction branch uses differentiable region pooling [2], allowing the initial
bounding box predicted by the Faster-RCNN to be refined using gradient-based
maximization of the predicted IoU confidence.

For our approach, we employ an identical architecture as used in loU-
Net for a fair comparison. Instead of training the network to output the
IoU, we predict the exponent fy(z,y) in (1), trained by minimizing the
negative log-likelihood in (4). We parametrize the bounding box as y =
(cz/wo, cy/ho, logw,logh) € RY, where (c;, ¢,) and (w, h) denote the center
coordinate and size, respectively. The reference size (wp, ho) is set to that of
the ground truth during training and the initial box during prediction. Based on
the ablation study found in Table 1, we employ L = 3 isotropic Gaussians with
standard deviation o; = 0.0375 - 2!=! for the proposal distribution (5). In ad-
dition to the standard IoU-Net, we compare with a version (denoted loU-Net*)
employing the same proposal distribution and inference settings as in our ap-
proach. For both our method and IoU-Net*, we set the refinement step-length
A using grid search on a separate validation set.

Our experiments are performed on the large-scale COCO benchmark [29]. We
use the 2017 train split (= 118 000 images) for training and the 2017 val split
(= 5000 images) for setting our hyperparameters. The results are reported
on the 2017 test-dev split (= 20 000 images), in terms of the standard COCO
metrics AP, APsy and AP75s. We also report the inference speed in terms of
frames-per-second (FPS) on a single NVIDIA TITAN Xp GPU. We initialize
all networks in our comparison with the pre-trained Faster-RCNN weights, us-
ing the ResNet50-FPN [28] backbone, and re-train only the newly added layers
for a fair comparison. The results are shown in Table 2. Our proposed method
obtains the best results, significantly outperforming Faster-RCNN and IoU-Net
by 2.2% and 1.1% in AP, respectively. The Gaussian model is outperformed by
the mixture of 2 Gaussians, but note that adding more components does not fur-
ther improve the performance. In comparison, the cVAE achieves somewhat
improved performance, but is still clearly outperformed by our method. Com-
pared to the probabilistic baselines, we believe that our energy-based model of-
fers a more direct and effective representation of the underlying density via the
scalar DNN output fy(z,y). The inference speed of our method is somewhat
lower than that of Faster-RCNN, but identical to IoU-Net. How the number of
iterations 7" in the gradient-based refinement affects inference speed and per-



ingNet [30] and UAV123 [31]. The symbol T indicates an approximate value (£1),
taken from the plot in the corresponding paper. Our proposed method significantly
outperforms the baseline ATOM and other recent state-of-the-art trackers.

Table 3: Results for the visual tracking task on the two common datasets Track- .

. ECO SiamFC MDNet UPDT DaSiamRPN SiamRPN++ ATOM ATOM* Ours
Dataset Metric

[53] [54] [12] [55] [13] [14] [15]
Precision (%) 492 533 56.5 55.7 59.1 69.4 64.8 66.6  69.7
TrackingNet Norm. Prec. (%) 61.8  66.6 70.5 70.2 733 80.0 77.1 784  80.1
Success (%) 554 571 60.6 61.1 63.8 733 70.3 72.0 745
OPy.50 (%) 64.0 - - 66.8 73.6 75t 78.9 79.0  80.8
UAV123 OPy.75 (%) 32.8 - - 329 41.1 561 55.7 56.5  60.2
AUC (%) 53.7 - 52.8 55.0 58.4 61.3 65.0 649 672

formance is analyzed in Figure 3a, showing that our choice 7" = 10 provides
a reasonable trade-off.

4.2 Visual Tracking

Next, we evaluate our approach on the problem of generic visual object track-
ing. The task is to estimate the bounding box of a target object in every frame
of a video. The target object is defined by a given box in the first video frame.
We employ the recently introduced ATOM [15] tracker as our baseline. Given
the first-frame annotation, ATOM trains a classifier to first roughly localize
the target in a new frame. The target bounding box is then determined using
an IoU-Net-based module, which is also conditioned on the first-frame tar-
get appearance using a modulation-based architecture. We train our network
to predict the conditional target density through fy(x,y) in (1), using a net-
work architecture identical to the baseline ATOM tracker. In particular, we
employ the same bounding box parameterization as for object detection (Sec-
tion 4.1) and sample M = 128 boxes during training from a proposal distri-
bution (5) generated by L = 2 Gaussians with standard deviations o; = 0.05,
oo = 0.5. During tracking, we follow the same procedure as in ATOM, sam-
pling 10 boxes in each frame followed by gradient ascent to refine the estimate
generated by the classification module. The inference speed of our approach is
thus identical to ATOM, running at over 30 FPS on a single NVIDIA GT-1080
GPU.

We demonstrate results on two standard tracking benchmarks: TrackingNet
[30] and UAV123 [31]. TrackingNet contains challenging videos sampled
from YouTube, with a test set of 511 videos. The main metric is the Success, de-
fined as the average loU overlap with the ground truth. UAV123 contains 123
videos captured from a UAV, and includes small and fast-moving objects. We
report the overlap precision metric (OPg), defined as the percentage of frames
having bounding box IoU overlap larger than a threshold H. The final AUC
score is computed as the average OP over all thresholds H € [0, 1]. Hyperpa-
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Figure 3: (a) Impact of the number of gradient ascent iterations 7' on performance
(AP) and inference speed (FPS), for the object detection task on the 2077 val split of
the COCO [29] dataset. (b) Success plot on the UAV123 [31] visual tracking dataset,
showing the overlap precision OPy; as a function of the overlap threshold H.

rameters are set on the OTB [56] and NFS [57] datasets, containing 100 videos
each. Due to the significant challenges imposed by the limited supervision
and generic nature of the tracking problem, there are no competitive baselines
employing direct bounding box regression. Current state-of-the-art employ ei-
ther confidence-based regression, as in ATOM, or anchor-based bounding box
regression techniques [13, 14]. We therefore only compare with the ATOM
baseline and include other recent state-of-the-art methods in the comparison.
As in Section 4.1, we also compare with a version (denoted ATOM™*) of the
IoU-Net-based ATOM employing the same training and inference settings as
our final approach. The results are shown in Table 3, and the success plot on
UAV 123 is shown in Figure 3b. Our approach achieves a significant 2.5% and
2.2% absolute improvement over ATOM on the overall metric on TrackingNet
and UAV 123, respectively. Note that the improvements are most prominent for
high-accuracy boxes, as indicated by OPg 75. Our approach also outperforms
the recent SiamRPN++ [14], which employs anchor-based bounding box re-
gression [1, 58] and a much deeper backbone network (ResNet50) compared
to ours (ResNet18). Figure 1 (bottom) visualizes an illustrative example of the
target density p(y|z;6) o e/*(®¥) predicted by our approach during tracking.
As illustrated, it predicts flexible densities which qualitatively capture mean-
ingful uncertainty in challenging cases.

4.3 Age Estimation

To demonstrate the general applicability of our proposed method, we also per-
form experiments on regression tasks not involving bounding boxes. In age
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Table 4: Results for the age estimation task on the UTKFace [59] dataset. Gradient-
based refinement using our proposed method consistently improves MAE (lower is
better) for the age predictions produced by a variety of different baselines.

+Refine Niuetal. [60] Caoetal. [11] Direct Gaussian Laplace Softmax (CE, L?)  Softmax (CE, L?, Var)
5.74 £ 0.05 547+0.01 4.81+0.02 479+0.06 4.85+0.04 4.78 £0.05 4.81 £0.03
v - - 4.65+£0.02 4.66+004 481+0.04 4.65 +0.04 4.69 £ 0.03

Table 5: Results for the head-pose estimation task on the BIWI [62] dataset. Gradient-
based refinement using our proposed method consistently improves the average MAE
(lower is better) for yaw, pitch and roll for the predicted pose produced by our baselines.

+Refine Guetal. [63] Yangetal. [8] Direct Gaussian Laplace Softmax (CE, L?)  Softmax (CE, L?, Var)

3.66 3.60 3.094+0.07 3.12+£0.08 3.21£0.06 3.04 4+ 0.08 3.15+£0.07
- 3.074+0.07 3.11+0.07 3.19 £0.06 3.01 £0.07 3.11 £ 0.06

v

estimation, we are given a cropped image x € R"*%*3 of a person’s face,

and the task is to predict his/her age y € R,. We utilize the UTKFace [59]
dataset, specifically the subset of 16 434 images used by Cao et al. [11]. We
also utilize the dataset split employed in [11], with 3 287 test images and 11 503
images for training. Additionally, we use 1644 of the training images for val-
idation. Methods are evaluated in terms of the Mean Absolute Error (MAE).
The DNN architecture fy(x,y) of our model first extracts ResNet50 [61] fea-
tures g, € R2%4® from the input image x. The age y is processed by four
fully-connected layers, generating g, € R12%. The two feature vectors are
then concatenated and processed by two fully-connected layers, outputting
fo(z,y) € R. We apply our proposed method to refine the age predicted by
baseline models, using the gradient ascent maximization of fy(z,y) detailed
in Section 3.3. All baseline DNN models employ a similar architecture, in-
cluding an identical ResNet50 for feature extraction and the same number of
fully-connected layers to output either the age y € R (Direct), mean and vari-
ance parameters for Gaussian and Laplace distributions, or to output logits for
C discretized classes (Sofimax). The results are found in Table 4. We observe
that age refinement provided by our method consistently improves the accuracy
of the predictions generated by the baselines. For Direct, e.g., this refinement
marginally decreases inference speed from 49 to 36 FPS.

4.4 Head-Pose Estimation

Lastly, we evaluate our method on the task of head-pose estimation. In this
case, we are given an image = € R"*%*3 of a person, and the aim is to predict
the orientation y € R3 of his/her head, where 3 is the yaw, pitch and roll
angles. We utilize the BIWI [62] dataset, specifically the processed dataset
provided by Yang et al. [8], in which the images have been cropped to faces
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detected using MTCNN [64]. We also employ protocol 2 as defined in [8],
with 10613 images for training and 5065 images for testing. Additionally,
we use 1010 training images for validation. The methods are evaluated in
terms of the average MAE for yaw, pitch and roll. The network architecture
of the DNN fy(z,%) defining our model takes the image x € R"*%*3 and
orientation y € R? as inputs, but is otherwise identical to the age estimation
case (Section 4.3). Our model is again evaluated by applying the gradient-
based refinement to the predicted orientation y € R? produced by a number of
baseline models. We use the same baselines as for age estimation, and apart
from minor changes required to increase the output dimension from 1 to 3,
1dentical network architectures are also used. The results are found in Table 5,
and also in this case we observe that refinement using our proposed method
consistently improves upon the baselines.

5 Conclusion

We proposed a general and conceptually simple regression method with a
clear probabilistic interpretation. It models the conditional target density
p(y|x) by predicting the un-normalized density through a DNN fy(z, y), tak-
ing the input-target pair (z, y) as input. This energy-based model p(y|x; 6) =
efo@Y) / 7(x,0) of p(y|x) is trained by directly minimizing the associated neg-
ative log-likelihood, employing Monte Carlo importance sampling to approxi-
mate the partition function Z(x, #). At test time, targets are predicted by maxi-
mizing the DNN output fy(z, y) w.r.t. y via gradient-based refinement. Exten-
sive experiments performed on four diverse computer vision tasks demonstrate
the high accuracy and wide applicability of our method. Future directions
include exploring improved architectural designs, studying other regression
applications, and investigating our proposed method’s potential for aleatoric
uncertainty estimation.
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Supplementary Material

In this supplementary material, we provide additional details and results. It
consists of Appendix A - Appendix F. Appendix A contains a detailed algo-
rithm for our employed prediction procedure. Appendix B contains details on
the illustrative 1D regression problem in Figure 2 in the main paper. Further
details on the employed training and inference procedures are provided in Ap-
pendix C for the object detection experiments, and in Appendix D for the visual
tracking experiments. Lastly, Appendix E and Appendix F contain details and
full results for the experiments on age estimation and head-pose estimation,
respectively. Note that equations, tables, figures and algorithms in this sup-
plementary document are numbered with the prefix “S”. Numbers without this
prefix refer to the main paper.

A Prediction Algorithm

Our prediction procedure (Section 3.3) is detailed in Algorithm S1, where A
denotes the gradient ascent step-length, n is a decay of the step-length and T’
is the number of iterations. In our experiments, we fix 1" (typically, 7' = 10)
and select {\, n} using grid search on a validation set.

Algorithm S1 Prediction via gradient-based refinement.
Input: =*, 4, T, A\, n.

1y <+ 4.
2: fort=1,...,Tdo

3: PrevValue « fg(z*,y).

4: g y+ AVyfo(z*,y).

5: NewValue < fy(z*, 7).

6: if NewValue > PrevValue then
7: Y .

8: else

9: A DA

10: Return y.

B Illustrative Example
The ground truth conditional target density p(y|x) in Figure 2 is defined by a
mixture of two Gaussian components (with weights 0.2 and 0.8) for z < 0,

and a log-normal distribution (with 4 = 0.0, 0 = 0.25) for x > 0. The
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training data {(=;,y;)}?%° was generated by uniform random sampling of z,

x; ~ U(—3,3). Both models were trained for 75 epochs with a batch size of
32 using the ADAM [65] optimizer.

The Gaussian model is defined using a DNN fy(z) according to,
p(yla: 0) = N (y: po(@), o (x)),
fo(z) = [po(z) logoi(x)]" € R2

It is trained by minimizing the negative log-likelihood, corresponding to the
loss,

(SD)

1~ (yi — po(wi))*
JO)==>" (y;‘—()) + log o2 (;). (S2)
= o)
The DNN fj is a simple feed-forward neural network, containing two shared
fully-connected layers (dimensions: 1 — 10, 10 — 10) and two identical
heads for ;. and log o2 of three fully-connected layers (10 — 10, 10 — 10,
10 — 1).

Our proposed model p(y|z;0) = el*@¥)/Z(x #) (Eq. 1 in the paper) is
defined using a feed-forward neural network fy(z,y) containing two fully-
connected layers (1 — 10, 10 — 10) for both x and y, and three fully-
connected layers (20 — 10, 10 — 10, 10 — 1) processing the concatenated
(x,y) feature vector. It is trained using M = 1024 samples from a proposal
distribution ¢q(y|y;) (Eq. 5 in the paper) with L = 2 and variances o2 = 0.12,
o3 =0.82

C Object Detection

Here, we provide further details about the network architectures, training pro-
cedure, and hyperparameters used for our experiments on object detection (Sec-
tion 4.1 in the paper).

C.1 Network Architecture

We use the Faster-RCNN [1] detector with ResNet50-FPN [28] as our baseline.
As visualized in Figure S1a, Faster-RCNN generates object proposals using a
region proposal network (RPN). The features from the proposal regions are
then pooled to a fixed-sized feature map using the RoiPool layer [66]. The
pooled features are then passed through a feature extractor (denoted Feat-Box)
consisting of two fully-connected (FC) layers. The output feature vector is then
passed through two parallel FC layers, one which predicts the class label (de-
noted FC-Cls), and another which regresses the offsets between the proposal

1-24



- - =
,,,,,,,,,

Features

(a) Faster-RCNN. (b) Laplace/Gaussian. (¢) IoU-Net/Ours.

Figure S1: Network architectures for the different object detection networks used in
our experiments (Section 4.1 in the paper). The backbone feature extractor (ResNet50-
FPN), and the region proposal network (RPN) is not shown for clarity. We do not train
the blocks in blue color, using the pre-trained Faster-RCNN weights from [67] instead.
The blocks in red are initialized with the pre-trained Faster-RCNN weights and fine-
tuned. The blocks in green on the other hand are trained from scratch.

and the ground truth box (denoted FC-BB). We use the PyTorch implementa-
tion for Faster-RCNN from [67]. Note that we use the RoiAlign [68] layer
instead of RoiPool in our experiments as it has been shown to achieve better
performance [68].

For the Gaussian and Laplace probabilistic models (Gaussian and Laplace in
Table 2 in the paper), we replace the FC-BB layer in Faster-RCNN with two par-
allel FC layers, denoted FC-BBMean and FC-BB Var, which predict the mean
and the log-variance of the distribution modeling the offset between the pro-
posal and the ground truth box for each coordinate. This architecture is shown
in Figure S1b. For the mixtures of K = {2,4,8} Gaussians, we duplicate
FC-BBMean and FC-BBVar K times, and add an FC layer for predicting the
K component weights. For the cVAE, FC-BBMean and FC-BBVar instead
outputs the mean and log-variance of a Gaussian distribution for the latent
variable z € R'°. Duplicates of FC-BBMean and FC-BBVar, modified to also
take sampled z values as input, then predicts the mean and log-variance of the
distribution modeling the bounding box offset.

For our confidence-based IoU-Net [2] models (IoU-Net and IoU-Net* in Ta-
ble 2), we use the same network architecture as employed in the original paper,
shown in Figure Slc. That is, we add an additional branch to predict the loU
overlap between the proposal box and the ground truth. This branch uses the
PrRoiPool [2] layer to pool the features from the proposal regions. The pooled
features are passed through a feature extractor (denoted Feat-Conf) consisting
of two FC layers. The output feature vector is passed through another FC layer,
FC-Conf, which predicts the IoU. We use an identical architecture for our ap-
proach, but train it to output fy(z,y) in p(y|z; 8) = e/*@Y) / Z(x, 0) instead.
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C.2 Training

We use the pre-trained weights for Faster-RCNN from [67]. Note that the
bounding box regression in Faster-RCNN is trained using a direct method, with
an Huber loss [32]. We trained the other networks in Table 2 in the paper (Gaus-
sian, Gaussian Mixt. 2, Gaussian Mixt. 4, Gaussian Mixt. 8, Gaussian cVAE,
Laplace, IoU-Net, IoU-Net* and Ours) on the MS-COCO [29] training split
(2017 train) using stochastic gradient descent (SGD) with a batch size of 16
for 60k iterations. The base learning rate Iry,g is reduced by a factor of 10
after 40k and 50k iterations, for all the networks. We also warm up the train-
ing by linearly increasing the learning rate from %lrbase to [Tpase during the first
500 iterations. We use a weight decay of 0.0001 and a momentum of 0.9. For
all the networks, we only trained the newly added layers, while keeping the
backbone and the region proposal network fixed.

For the Gaussian, mixture of Gaussians, cVAE and Laplace models, we only
train the final predictors (FC-BBMean and FC-BB Var), while keeping the class
predictor (FC-Cls) and the box feature extractor (Feat-Box) fixed. We also
tried fine-tuning the FC-Cls and Feat-Box weights for the Gaussian model,
with different learning rate settings, but obtained worse performance on the
validation set. The weights for both FC-BBMean and FC-BBVar were ini-
tialized with zero mean Gaussian with standard deviation of 0.001. All these
models were trained with a base learning rate (7, = 0.005 by minimizing the
negative log-likelihood, except for the cVAE which is trained by maximizing
the ELBO (using 128 sampled z values to approximate the expectation).

For the [IoU-Net, IoU-Net* and our proposed model, we only trained the newly
added confidence branch. We found it beneficial to initialize the feature extrac-
tor block (Feat-Conf) with the corresponding weights from Faster-RCNN, i.e.
the Feat-Box block. The weights for the predictor FC-Conf were initialized
with zero mean Gaussian with standard deviation of 0.001. As in the origi-
nal paper [2], we used a base learning rate [7p,se = 0.01 for the IoU-Net and
IoU-Net* networks. For our proposed model, we used Irp,se = 0.001 due to
the different scaling of the loss. Note that we did not perform any parame-
ter tuning for setting the learning rates. We generate 128 proposals for each
ground truth box during training. For the [oU-Net, we use the proposal genera-
tion strategy mentioned in the original paper [2]. That is, for each ground truth
box, we generate a large set of candidate boxes which have an loU overlap of at
least 0.5 with the ground truth, and uniformly sample 128 proposals from this
candidate set w.r.t. the loU. For IoU-Net* and our model, we sample boxes
from a proposal distribution (Eq. 5 in the paper) generated by L = 3 Gaus-
sians with standard deviations of 0.0375, 0.075 and 0.15. The IoU-Net and
IoU-Net* are trained by minimizing the Huber loss between the predicted [oU
and the ground truth, while our model is trained by minimizing the negative
log likelihood of the training data (Eq. 4 in the paper).
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Table S1: Impact of L and {o;}£, in the proposal distribution ¢(y|y;) (Eq. 5 in the
paper), for the object detection task on the 2017 val split of COCO [29].

L {o}E, AP (%)
1 [ {0.01875} 38.07
1 | {0.0375} 38.47
1 | {0.075} 37.52
1 | {0.15} 35.05
2 [ {0.025,0.1} 38.97
2 | {0.0375,0.15} 39.05
2 | {0.04375,0.175} 39.07
2 | {0.05,0.2} 39.02
2 | {0.0125,0.025} 38.19
2 | {0.025,0.05} 38.65
2 | {0.075,0.15} 37.14
3 [ {0.0125,0.025,0.05} 38.61
3 | {0.025,0.05,0.1} 38.95
3 | {0.0375,0.075,0.15} 39.11
3 | {0.04375,0.0875,0.175} 39.00
3 | {0.05,0.1,0.2} 38.76
3 | {0.0625,0.125,0.25} 37.96
3 | {0.075,0.15,0.3} 37.42

C.3 Analysis of Proposal Distribution

An extensive ablation study for the number of components L and standard
deviations {o; }} ; in the proposal distribution ¢(y|y;) = 1 S N (s i, o?)
(Eq. 5 in the paper) is provided in Table S1, which is an extended version of
Table 1 in the paper. We find that . = 1 downgrades performance, while
there is no significant difference between L = 2 and L = 3. For L € {2, 3},
the results are not particularly sensitive to the specific choice of {07} 1> but
benefits from including both small and relatively large values in {07}~ ;.

C.4 Inference

The inference in both the Gaussian and Laplace models is identical to the one
employed by Faster-RCNN, except the output mean is taken as the prediction.
Thus, we do not utilize the output variances during inference. For the mix-
ture of K = {2, 4, 8} Gaussians, we compute the mean of the distribution and
take that as our prediction. Instead picking the component with the largest
weight and taking its mean as the prediction resulted in somewhat worse val-
idation performance. For cVAE, we approximately compute the mean (using
128 samples) of the distribution and take that as our prediction.
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Table S2: Impact of L and {o;}~, in the proposal distribution ¢(y|y;) (Eq. 5 in the
paper), for the visual tracking task on the combined OTB [56] and NFS [57] datasets.

L {o}E, OPg50 (%)  OPg75 (%)  AUC (%)
[ 110,05} 7577 3572 63.37
2 {0.01, 0.1} 77.25 46.09 61.48
2 {0.03, 0.3} 79.27 48.59 63.65
2 {0.05, 0.5} 79.90 48.71 64.10
2 {0.07, 0.7} 78.41 47.72 62.75

For loU-Net and IoU-Net*, we perform loU-Guided NMS as described in [2],
followed by gradient-based refinement (Algorithm S1). For our proposed ap-
proach we adopt the same NMS technique, but guide it with the values fy(z,y)
predicted by our network instead. We use a step-length A = 0.5 and step-
length decay 7 = 0.1 for IoU-Net. For IoU-Net* and our approach we per-
form the gradient-based refinement in the relative bounding box parametriza-
tion y = (cz/wo,cy/ho,logw,logh) (see Section 4.1 in the paper). Here,
we employ different step-lengths for position and size. For loU-Net*, we use
A = 0.002 and A = 0.008 respectively, with a decay of » = 0.2. For our
proposed approach, we use A = 0.0001 and A = 0.0004 with n = 0.5. For
all methods, these hyperparameters (A and 77) were set using a grid search on
the COCO validation split (2017 val). We used T' = 10 refinement iterations
for each of the three models. Note that since a given image x can have multi-
ple ground truth instances, multiple bounding boxes are usually refined. The
gradient-based refinement then moves each individual box y towards the max-
imum of a Jocal mode in fy(z,y). Thus, they will not converge to a single so-
lution. Also note that fy(z,y) is class-conditional (as in the IoU-Net baseline),
eliminating the risk of confusing neighboring objects of different classes.

D Visual Tracking

Here, we provide further details about the training procedure and hyperparam-
eters used for our experiments on visual object tracking (Section 4.2 in the

paper).

D.1 Training

We adopt the ATOM [15] tracker as our baseline, and use the PyTorch imple-
mentation and pre-trained weights from [69]. ATOM trains an IoU-Net-based
module to predict the IoU overlap between a candidate box and the ground
truth, conditioned on the first-frame target appearance. The loU predictor is
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trained by generating 16 candidates for each ground truth box. The candidates
are generated by adding a Gaussian noise for each ground truth box coordinate,
while ensuring a minimum IoU overlap of 0.1 between the candidate box and
the ground truth. The network is trained by minimizing the squared error (L?
loss) between the predicted and ground truth loU.

Our proposed model is instead trained by sampling 128 candidate boxes from
a proposal distribution (Eq. 5 in the paper) generated by L = 2 Gaussians with
standard deviations of 0.05 and 0.5, and minimizing the negative log likelihood
of the training data. An ablation study for the proposal distribution is found
in Table S2. We use the training splits of the TrackingNet [30], LaSOT [70],
GOTI10k [71], and COCO datasets for our training. Our network is trained
for 50 epochs, using the ADAM optimizer with a base learning rate of 0.001
which is reduced by a factor of 5 after every 15 epochs. The rest of the training
parameters are exactly the same is in ATOM. The ATOM* model is trained by
using the exact same proposal distribution, datasets and settings. It only differs
by the loss, which is the same squared error between the predicted and ground
truth IoU as in the original ATOM.

D.2 Inference

During tracking, the ATOM tracker first applies the classification head net-
work, which is trained online, to coarsely localize the target object. 10 random
boxes are then sampled around this prediction, to be refined by the IoU pre-
diction network. We only alter the final bounding box refinement step of the
10 given random initial boxes, and preserve all other settings as in the original
ATOM tracker. The original version performs 7' = 5 gradient ascent iterations
with a step length of A = 1.0. For our proposed model and the ATOM* version,
we use 7' = 10 iterations, employing the bounding box parameterization de-
scribed in Section 4.1. For our approach, we set the step length to A = 2-1074
for position and A = 1073 for size dimensions. For ATOM*, we use A = 1072
for position and A = 5 - 10~ for size dimensions. These parameters were set
on the separate validation set. For simplicity, we adopt the vanilla gradient
ascent strategy employed in ATOM for the two other methods as well. That is,
we have no decay (n = 1) and do not perform checks whether the confidence
score is increasing in each iteration.

D.3 Qualitative Results

Illustrative examples of the target density p(y|z; 8) o< e/ (@.9) predicted by our
approach during tracking are visualized in Figure S2.
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Figure S2: Visualization of the conditional target density p(y|z;6) o ef*(®¥) pre-
dicted by our network for the task of bounding box estimation in visual tracking. Since
the target space y € R* is 4-dimensional, we visualize the density for different loca-
tions of the top-right corner as a heatmap, while the bottom-left is kept fixed at the
tracker output (red box). Our network predicts flexible densities which qualitatively
capture meaningful uncertainty in challenging cases.

Table S3: Impact of {o;}7_, in the proposal distribution ¢(y|y;) (Eq. 5 in the paper),
for the age estimation task on our validation split of the UTKFace [59] dataset.

{o1}2, MAE
{0.1, 10} 7.62
{0.1, 20} 5.12
{0.01, 20} 5.36
{0.1, 40} 5.24

E Age Estimation

In this appendix, further details on the age estimation experiments (Section 4.3
in the paper) are provided.

E.1 Network Architecture

The DNN architecture fy(x,y) of our proposed model first extracts ResNet50
features g, € R2%48 from the input image x. The age y is processed by four
fully-connected layers (dimensions: 1 — 16, 16 — 32, 32 — 64, 64 — 128),
generating g, € R'?®. The two feature vectors g, g, are then concatenated
to form g, ,, € R?%8+128 which is processed by two fully-connected layers
(2048 + 128 — 2048, 2048 — 1), outputting f(z, 1) € R.

E.2 Training

Our model is trained using M = 1024 samples from a proposal distribu-

tion q(yly;) (Eq. 5 in the paper) with L = 2 and variances o7 = 0.1%

o3 = 202. An ablation study for the variances is found in Table S3. The
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model is trained for 75 epochs with a batch size of 32, using the ADAM opti-
mizer with weight decay of 0.001. The images x are of size 200 x 200. For
data augmentation, we use random flipping along the vertical axis and random
scaling in the range [0.7,1.4]. After random flipping and scaling, a random
image crop of size 200 x 200 is also selected. The ResNet50 is imported from
torchvision.models in PyTorch with the pretrained option set to true, all
other network parameters are randomly initialized using the default initializer
in PyTorch.

E.3 Prediction

For this experiment, we use a slight variation of Algorithm S1, which is found
in Algorithm S2. There, 7" is the number of gradient ascent iterations, A is the
stepsize, (1; is an early-stopping threshold and {2, is a degeneration tolerance.
Following IoU-Net, we set T' = 5, {1 = 0.001 and 2o = —0.01. Based on
the validation set, we select A = 3. We refine a single estimate g, predicted by
each baseline model.

Algorithm S2 Prediction via gradient-based refinement (variation).
Input: o*, g, T, A\, Q1, Qo.

1.y < 9.
2:. fort=1,...,T do
3: PrevValue « fg(z*,y).

4y y+ AV, fe(ar,y).

5: NewValue < fp(z*,y).

6 if |Prevvalue — NewValue| < € or (NewValue —
PrevValue) < s then

7: Return y.

8: Return y.

E.4 Baselines

All baselines are trained for 75 epochs with a batch size of 32, using the ADAM
optimizer with weight decay of 0.001. Identical data augmentation and param-
eter initialization as for our proposed model is used.

Direct The DNN architecture of Direct first extracts ResNet50 features g, €
R2948 from the input image x. The feature vector g, is then processed by two
fully-connected layers (2048 — 2048, 2048 — 1), outputting the prediction
¢ € R. It is trained by minimizing either the Huber or L? loss.
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Table S4: Full results for the age estimation experiments. Gradient-based refinement
using our proposed method consistently improves MAE (lower is better) for the age
predictions outputted by a number of baselines.

Method MAE
Niu et al. [60] 5.74 £+ 0.05
Caoetal. [11] 5.47 £0.01
Direct - Huber 4.80 £ 0.06
Direct - Huber + Refinement 4.74 + 0.06
Direct - L2 4.81 +0.02
Direct - L2 + Refinement 4.65 + 0.02
Gaussian 4.79 £+ 0.06
Gaussian + Refinement 4.66 + 0.04
Laplace 4.85 1+ 0.04
Laplace + Refinement 4.81 £0.04
Softmax - CE & L2 478 £ 0.05
Softmax - CE & L2 + Refinement 4.65 £+ 0.04
Softmax - CE, L2 & Var 4.81 £0.03
Softmax - CE, L2 & Var + Refinement || 4.69 + 0.03

Gaussian The Gaussian model is defined using a DNN fy(z) according to,
p(ylz;0) = N (y; po(2), o5()),
fo(z) = [pp(z) logoi(x)]" € R2

It is trained by minimizing the negative log-likelihood, corresponding to the
loss,

(S3)

2 odw) .

+ log o (;).

The DNN architecture of f(x) first extracts ResNet50 features g, € R2048
from the input image x. The feature vector g, is then processed by two heads
of two fully-connected layers (2048 — 2048, 2048 — 1) to output pp(x) and
log 03 (). The mean fiy() is taken as the prediction §.

Laplace The Laplace model is defined using a DNN fy(z) according to,

p<y|x;e>=2ﬁj(x)exp{ L “9 o= hotally

fo(z) = [po(z) logﬁo(m)} eRQ.

It is trained by minimizing the negative log-likelihood, corresponding to the

loss,
lyi —
Z 59

(S5)

+ log By (). (S6)
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The DNN architecture of fp(x) first extracts ResNet50 features g, € R204%
from the input image x. The feature vector g, is then processed by two heads
of two fully-connected layers (2048 — 2048, 2048 — 1) to output pg(z) and
log Bp(z). The mean pg(x) is taken as the prediction .

Softmax The DNN architecture of Sofimax first extracts ResNet50 features
gz € R?%8 from the input image x. The feature vector g, is then processed
by two fully-connected layers (2048 — 2048, 2048 — ('), outputting logits
for C' = 101 discretized classes {0, 1,...,100}. It is trained by minimizing
either the cross-entropy (CE) and L? losses, J = Jog +0.1J12, or the CE, L?
and variance [10] losses, J = Jog + 0.1Jr2 4+ 0.05Jy/,.. The prediction g is
computed as the softmax expected value.

E.5 Full Results

Full experiment results, extending the results found in Table 4 (Section 4.3 in
the paper), are provided in Table S4.

F Head-Pose Estimation

In this appendix, further details on the head-pose estimation experiments (Sec-
tion 4.4 in the paper) are provided.

F.1 Network Architecture

The DNN architecture fy(x,y) of our proposed model first extracts ResNet50
features g, € R?%® from the input image x. The pose y € R3 is processed
by four fully-connected layers (dimensions: 3 — 16, 16 — 32, 32 — 64,
64 — 128), generating g, € R'28_ The two feature vectors g, gy are then con-
catenated to form g, € R2048128 \which is processed by two fully-connected
layers (2048 + 128 — 2048, 2048 — 1), outputting fy(z,y) € R.

F.2 Training

Our model is trained using M = 1024 samples from a proposal distribution
q(y|y:) (Eq. 5 in the paper) with L = 2 and variances 0% = 1%, 03 = 202 for
yaw, pitch and roll. An ablation study for the variances is found in Table S5.
The model is trained for 75 epochs with a batch size of 32, using the ADAM
optimizer with weight decay of 0.001. The images x are of size 64 x 64. For
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Table S5: Impact of {o;}7_, in the proposal distribution ¢(y|y;) (Eq. 5 in the paper),
for the head-pose estimation task on our validation split of the BIWI [62] dataset.

{o1}2_, Average MAE

{0.1,20} 6.96
(1,20} 5.08
{1, 30} 5.24
(2,20} 7.02
{1, 10} 7.56

data augmentation, we use random flipping along the vertical axis and random
scaling in the range [0.7,1.4]. After random flipping and scaling, a random
image crop of size 64 x 64 is also selected. The ResNet50 is imported from
torchvision.models in PyTorch with the pretrained option set to true, all
other network parameters are randomly initialized using the default initializer
in PyTorch.

F.3 Prediction

For this experiment, we also use the prediction procedure detailed in Algo-
rithm S2. Again following IoU-Net, we set T = 5, 2; = 0.001 and
) = —0.01. Based on the validation set, we select A = 0.1. We refine a
single estimate ¢, predicted by each baseline model.

F.4 Baselines

All baselines are trained for 75 epochs with a batch size of 32, using the ADAM
optimizer with weight decay of 0.001. Identical data augmentation and param-
eter initialization as for our proposed model is used.

Direct The DNN architecture of Direct first extracts ResNet50 features g, €
R2948 from the input image x. The feature vector g, is then processed by two
fully-connected layers (2048 — 2048, 2048 — 3), outputting the prediction
i € R3. It is trained by minimizing either the Huber or L? loss.
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finement using our proposed method consistently improves the average MAE for yaw,

Table S6: Full results for the head-pose estimation experiments. Gradient-based re-
pitch, roll (lower is better) for the predicted poses outputted by a number of baselines. .

Method Yaw MAE  Pitch MAE RollMAE  Avg. MAE
Yang et al. [42] 4.24 4.35 4.19 4.26
Gu et al. [63] 391 4.03 3.03 3.66
Yang et al. [8] 2.89 4.29 3.60 3.60
Direct - Huber 2.78 £0.09 | 3.73 £0.13 | 2.90 £ 0.09 | 3.14 + 0.07
Direct - Huber + Refine. 2.75+0.08 | 3.70 £0.11 | 2.87 £0.09 | 3.11 £ 0.06
Direct - L2 2.81 £0.08 | 3.60 £ 0.14 | 2.85 £ 0.08 | 3.09 + 0.07
Direct - L2 + Refine. 2.78 £0.08 | 3.62 £0.13 | 2.81 £0.08 | 3.07 + 0.07
Gaussian 2.89+£0.09 | 3.64 £0.13 | 2.83 £0.09 | 3.12+0.08
Gaussian + Refine. 2.84+0.08 | 3.67 £0.12 | 2.81 £0.08 | 3.11 £ 0.07
Laplace 293 +£0.08 | 3.80 £0.15 | 2.90 £ 0.07 | 3.21 +0.06
Laplace + Refine. 2.89 +£0.07 | 3.81 £0.13 | 2.88 £0.06 | 3.19 + 0.06
Softmax - CE & L2 2.73+£0.09 | 3.63 £0.13 | 2.77 £ 0.11 | 3.04 = 0.08
Softmax - CE & L2 + Refine. 2.67+£0.08 | 3.61 £0.12 | 2.75 4+ 0.10 | 3.01 +0.07
Softmax - CE, L2 & Var 2.83+0.12 | 3.79 £0.10 | 2.84 £ 0.11 | 3.15 £ 0.07
Softmax - CE, L2 & Var + Refine. || 2.76 £ 0.10 | 3.74 = 0.09 | 2.83 £0.10 | 3.11 = 0.06

Gaussian The Gaussian model is defined using a DNN fp(x) according to,

p(ylz;0) = N (y; o (), To(x)),  To(x) = diag(oj(2)),
y=[n v ] €R’
po(x) = [po(x) poo(z) pse(x)]’ € R?, (S7)
‘73( ) = [U% (z) U%e(fﬁ) Ug,e(x)]T € R?,

7 5

folz) = [po(x)T logog(x)T]" € R,

It is trained by minimizing the negative log-likelihood, corresponding to the
loss,

n 3
J(0) = :LZ<Z y’“aki’“gf() 7))’ —I—logaiﬂ(azi)). (S8)

=1 =1

The DNN architecture of fp(x) first extracts ResNet50 features g, € R204®
from the input image x. The feature vector g, is then processed by two heads
of two fully-connected layers (2048 — 2048, 2048 — 3) to output zig(z) € R3
and log 03(z) € R®. The mean p19() is taken as the prediction §.
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Laplace Following [22], the Laplace model is defined using a DNN fy(z)
according to,

3 N

p(ylz;0)= Hﬂk@ éexp{—;<;(yk ﬁ::(i(;g)) ) 3
y=I[n v ] €R’

po(x) = [po(x) poo(z) pso(x)]’ € R?,

Bo(z) = [Bro(z) Bao(z) Bsg(x)]" € R?,

fo(z) = [po(x)" logfo(z)T]" € R,

It is trained by minimizing the negative log-likelihood, corresponding to the
loss,

(S9)

J(0) 1 i{(i (yk,i_ﬂk,e(xi))2> §+il Bl )} s10)
nim W\ Prelai) k=1 sk

The DNN architecture of fp(x) first extracts ResNet50 features g, € R2048
from the input image x. The feature vector g, is then processed by two heads
of two fully-connected layers (2048 — 2048, 2048 — 3) to output 1ig(z) € R3
and log By(z) € R3. The mean yy(z) is taken as the prediction 7.

Softmax The DNN architecture of Softmax first extracts ResNet50 features
gz € R?48 from the input image x. The feature vector g, is then processed
by three heads of two fully-connected layers (2048 — 2048, 2048 — (),
outputting logits for C' = 151 discretized classes {—75, —74, ..., 75} for the
yaw, pitch and roll angles (in degrees). It is trained by minimizing either the
cross-entropy (CE) and L? losses, J = Jog + 0.1J72, or the CE, L? and
variance [10] losses, J = Jop + 0.1Jr2 + 0.05Jy4-. The prediction g is
obtained by computing the softmax expected value for yaw, pitch and roll.

F.5 Full Results

Full experiment results, extending the results found in Table 5 (Section 4.4 in
the paper), are provided in Table S6.
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How to Train Your Energy-Based
Model for Regression

Abstract

Energy-based models (EBMs) have become increasingly popular within com-
puter vision in recent years. While they are commonly employed for genera-
tive image modeling, recent work has applied EBMs also for regression tasks,
achieving state-of-the-art performance on object detection and visual tracking.
Training EBMs is however known to be challenging. While a variety of dif-
ferent techniques have been explored for generative modeling, the application
of EBMs to regression is not a well-studied problem. How EBMs should be
trained for best possible regression performance is thus currently unclear. We
therefore accept the task of providing the first detailed study of this problem.
To that end, we propose a simple yet highly effective extension of noise con-
trastive estimation, and carefully compare its performance to six popular meth-
ods from literature on the tasks of 1D regression and object detection. The
results of this comparison suggest that our training method should be consid-
ered the go-to approach. We also apply our method to the visual tracking task,
achieving state-of-the-art performance on five datasets. Notably, our tracker
achieves 63.7% AUC on LaSOT and 78.7% Success on TrackingNet. Code is
available at https://github.com/fregu856/ebms regression.

1 Introduction

Energy-based models (EBMs) [1] have a rich history in machine learning [2, 3,
4,5, 6]. An EBM specifies a probability density p(x; 0) = e/o(@)/ [ efo(@)dy
directly via a parameterized scalar function fp(x). By defining fy(x) using
a deep neural network (DNN), p(z;6) becomes expressive enough to learn
practically any density from observed data. EBMs have therefore become in-
creasingly popular within computer vision in recent years, commonly being
applied for various generative image modeling tasks [7, 8, 9, 10, 11, 12, 13].
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Figure 1: We propose NCE+ to train EBMs p(y|x; 0) for tasks such as bounding box
regression. NCE+ is a highly effective extension of NCE, accounting for noise in
the annotation process of real-world datasets. Given a label y; (red box), the EBM
is trained by having to discriminate between y; + v; (yellow box) and noise samples
{y@&mIM_ - (blue boxes).

Recent work [14, 15] has also explored conditional EBMs as a general formula-
tion for regression, demonstrating particularly impressive performance on the
tasks of object detection [16, 17, 18] and visual tracking [19, 20, 21]. Regres-
sion entails predicting a continuous target y from an input x, given a training
set of observed input-target pairs. This was addressed in [14, 15] by learning
a conditional EBM p(y|z; 0), capturing the distribution of the target value y
given the input x. At test time, gradient ascent was then used to maximize
p(y|z; 0) w.rt. y, producing highly accurate predictions. Regression is a fun-
damental problem within computer vision with many additional applications
[22, 23, 24, 25, 26], which all would benefit from such accurate predictions. In
this work, we therefore study the use of EBMs for regression in detail, aiming
to further improve its performance and applicability.

While the modeling capacity of EBMs makes them highly attractive for many
applications, training EBMs is known to be challenging. This is because the
EBM p(z;0) = e/*(@)/ [ ¢fo(*)dz involves an intractable integral, complicat-
ing the use of standard maximum likelihood (ML) learning. A variety of differ-
ent techniques have therefore been explored in the generative modeling litera-
ture, including alternative estimation methods [27, 13, 28, 29, 30] and approx-
imations based on Markov chain Monte Carlo (MCMC) [31, 10, 9, 12]. The
application of EBMs for regression is however not a particularly well-studied
problem. [14, 15] both applied importance sampling to approximate intractable
integrals, an approach known to scale poorly with the data dimensionality, and
considered no alternative techniques. How EBMs p(y|z; #) should be trained
for best possible performance on computer vision regression tasks is thus an
open question, which we set out to investigate in this work.
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Contributions We propose a simple yet highly effective extension of noise
contrastive estimation (NCE) [27] to train EBMs p(y|x; @) for regression tasks.
Our proposed method, termed NCE+, can be understood as a direct general-
ization of NCE, accounting for noise in the annotation process. We evaluate
NCE+ on illustrative 1D regression problems and on the task of bounding box
regression in object detection. We also provide a detailed comparison of NCE+
and six popular methods from previous work, the results of which suggest that
NCE+ should be considered the go-to training method. Lastly, we apply our
proposed NCE+ to the task of visual tracking, achieving state-of-the-art results
on five common datasets.

2 Energy-Based Models for Regression

We study the application of EBMs to important regression tasks in computer
vision, using energy-based models of the conditional density p(y|z). Here,
we first define the general regression problem and our employed EBM in Sec-
tion 2.1. Our prediction strategy based on gradient ascent is then described in
Section 2.2. Lastly, we discuss the challenges associated with training EBMs,
and describe six popular methods from the literature, in Section 2.3.

2.1 Problem & Model Definition

In a supervised regression problem, we are given a training set D of i.i.d. input-
target pairs, D = {(z;,y:)}}Vq, (z:,9:) ~ p(x,y). The task is then to learn
how to predict a target y* € ) given a new input z* € X. The target space
Y is continuous, )V = RX for some K > 1, and the input space X usually
corresponds to the space of images.

As in [14, 15], we address this problem by creating an energy-based model
p(y|z; 0) of the conditional target density p(y|z). To that end, we specify a
DNN fy : X x Y — R with model parameters § € R”. This DNN directly
maps any input-target pair (z,y) € X x ) toascalar fy(x,y) € R. The model
p(y|z; 0) of the conditional target density is then defined as,

efél(xfy)
Z(x,0)’

plyle: ) = Z(a,0) = [ e 1)
where the DNN output fp(z,y) € R is interpreted as the negative energy of
the density, and Z(x, 0) is the input-dependent normalizing partition function.
Since p(y|z; @) in (1) is directly defined by the DNN fp, minimal restricting
assumptions are put on the true p(y|z). The predictive power of the DNN can
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thus be fully exploited, enabling learning of, e.g., multi-modal and asymmet-
ric densities directly from data. This expressivity however comes at the cost
of Z(x,0) being intractable, which complicates evaluating or sampling from

p(ylz; 0).

2.2 Prediction

At test time, the problem of predicting a target value y* from an input z*
corresponds to finding a point estimate of the predicted conditional density
p(y|z*;0). The most natural choice is to select the most likely target under
the model, y* = argmax, p(y|z*; ) = argmax,, fy(z*,y). The prediction y*
is thus obtained by directly maximizing the DNN scalar output fy(z*,y) w.r.t.
y, not requiring Z(x*, 0) to be evaluated nor any samples from p(y|z*; ) to
be generated. Following [14, 15], we estimate y* = argmax, fo(x*,y) by
performing gradient ascent to refine an initial estimate ¢ and find a local max-
imum of fp(x*,y). Starting at y = g, we thus run 7" gradient ascent iterations,
y < y + AV, fo(2*,y), with step-length A\. An algorithm for this prediction
procedure is found in the supplementary material.

2.3 Training

To train the DNN fy(x,y) specifying the EBM (1), different techniques for
fitting a density p(y|z;0) to observed data {(x;,y;)}, can be used. In gen-
eral, the most commonly applied such technique is ML learning, which entails
minimizing the negative log-likelihood (NLL),

N N
— logp(yilzi;0) = log ( / efe(xf’wdy) — folzi,yi), Q)
=1 i=1

w.r.t. the parameters §. The integral in (2) is however intractable, and exact
evaluation of the NLL is thus not possible. [14, 15] employed importance
sampling to approximate such intractable integrals, obtaining state-of-the-art
performance on object detection and visual tracking. Recent work [13, 32, 33,
10, 12, 11] on generative image modeling has however applied a variety of dif-
ferent training methods not considered in [14, 15], including the ML learning
alternatives NCE [27] and score matching [28]. How we should train the DNN
fo to obtain best possible regression performance is thus unclear. In this work,
we therefore carefully compare our proposed method to six popular training
methods from the literature.

ML with Importance Sampling (ML-IS) A straightforward training method
is proposed in [14], which we term ML with Importance Sampling (ML-IS).
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Using ML-IS, [14] successfully applied the EBM (1) to the regression tasks
of object detection, visual tracking, age estimation and head-pose estimation.
In ML-IS, the DNN fj is trained by directly minimizing the NLL (2) w.r.t. 6,
using importance sampling to approximate the intractable integral,

M oy )

1
m=1 v

Here, {y(""™) _, are M samples drawn from a proposal distribution ¢(y|y;)
that depends on the ground truth target ;. In [14], ¢(y|y;) is set to a mixture
of K Gaussians centered at y;,

K

a(yly:) = — Z (3 vi ok ). 4)

k

The loss J(6) is obtained by averaging over all pairs {(z;, y;) }/_; in the current
mini-batch,

) ). 6

1 1 AL pfolwy)
— (g 2
n M

A= a(ymy;)

KL Divergence with Importance Sampling (KLD-IS) Instead of mini-
mizing the NLL (2), [15] considers the Kullback-Leibler (KL) divergence
Dxr(p(ylyi) || p(y|zi; 0)) between the EBM p(y|x;; 6) and an assumed den-
sity p(y|y;) of the true target y given the label y;. The density p(y|y;) models
noise in the annotation process of our given training set D = {(z;,v;)}Y,. In
[15], p(y|ys) = N (y; i, 02I), where o is a hyperparameter. As shown in [15],

D (p(yly:) || p(ylai; 0)) =log </ ef"(z“y)dy> _/fﬁ(fﬂia y)p(yly:)dy + C,
(6)

where C' is a constant that does not depend on . [15] approximates the inte-
grals in (6) using importance sampling, employing the ML-IS proposal ¢(y|y;)
in (4). By then averaging over all pairs {(z;, ;) }/"_; in the current mini-batch,
the loss J(6) used to train fy is obtained as,

1 & 1 efo(ziym™) ( ™))
i 1 e ey (i,m)
n;0g< Z > Zfe Q( ”"\y)

A= q(ym]y;)
(7

where {y(*"}M_  are M samples drawn from the proposal q(y|y;). We
term this training method KL Divergence with Importance Sampling (KLD-IS).
When applied to visual tracking in [15], KLD-IS outperformed ML-IS and set
a new state-of-the-art.
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ML with MCMC (ML-MCMC) To minimize the negative log-likelihood (2)
w.r.t. the parameters 6, the following identity for the expression of the gradient
Vo — log p(yi|zi; ) can be utilized [1],

Vo —logp(yilzi; 0) = Epyjz.:0) [Vefe(l‘i,y)} = Vofo(zi, i) ()

The expectation in (8) is then approximated using samples {y(*"™}M_  drawn
from p(y|x;;0), i.e. from the EBM itself. To obtain each sample y](i’m)
p(y|zi; 0), MCMC is used. Specifically, we follow recent work [7, 8, 10, 9,
12, 11] on generative image modeling and run L > 1 steps of Langevin dy-
namics [34]. Starting at y(g), we thus update y ;) according to,

~

2
(6%
Ya+1) = ya) + 7Vyf9($i, yy) + e, e ~N(0,1), ©)

and set 3™ = (r)- Here, a > 0 is a small constant step-length. Following
the principle of contrastive divergence [1, 31, 2], we start the Markov chain (9)
at the ground truth target, y) = y;. By approximating (8) with the samples
{yGmNM_ "and by averaging over all pairs {(;,;)}?, in the current mini-
batch, the loss J(#) used to train the DNN fy is obtained as,

n M
1002332 (57 X Al ) ot 00

1=
We term this specific training method ML with MCMC (ML-MCMC).

Noise Contrastive Estimation (NCE) As an alternative to ML learning, Gut-
mann and Hyviérinen proposed NCE [27] for estimating unnormalized para-
metric models. NCE entails generating samples from some noise distribution
pn, and learning to discriminate between these noise samples and observed
data examples. It has recently been applied to generative image modeling with
EBMs [13], and the NCE loss is also utilized in various frameworks for self-
supervised learning [35, 36, 37]. Moreover, NCE has been applied to train
EBMs for supervised classification tasks within language modeling [38, 39,
40, 41], where the target space ) is a large but finite set of possible labels. We
adopt NCE for regression by using a noise distribution px (y|y;) of the same
form as the ML-IS proposal in (4),

1 K

PN (ylyi) = ?ZN(y;ymiI), (11)
k=1

and by employing the ranking NCE objective [40], as described in [41]. We
choose ranking NCE over the binary objective since it is consistent under a
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weaker assumption [41]. We thus define (%) £ y; and train the DNN fy by
minimizing the following loss,

1o exp { fo(wi, y"0) —logpi (40 i)
J(O) =—=> log —5; { o . )} . (12)
n= TS yexp { fo(zi, y @) — log pa (y©m)|y;) }
where {3 M_"are M noise samples drawn from py (y|y;) in (11).

Score Matching (SM) Another alternative estimation method is score match-
ing (SM), as proposed by Hyvirinen [28] and further studied for supervised
problems in [42]. The method focuses on the score of p(y|z;0), defined as
Vylogp(y|z;0) = Vy fo(x,y), aiming for it to approximate the score of the
true target density p(y|x). Note that the EBM score V,, fy(x,y) does not de-
pend on the intractable Z(z, 8). SM was applied to simple conditional density
estimation problems in [42], using a combination of feed-forward networks and
reproducing kernels to specify the EBM. Following [42], we train the DNN fy
by minimizing the loss,

1 — 1
- n;tr(vf,fe(xi,yi)) + §Hvyf9(mi,yi)H§, (13)

where only the diagonal of ij fo(x;,y;) actually is needed to compute the first
term.

Denoising Score Matching (DSM) By modifying the SM objective, denois-
ing score matching (DSM) was proposed by Vincent [29]. DSM does not re-
quire computation of any second derivatives, improving its scalability to high-
dimensional data. The method entails employing SM on noise-corrupted data
points. Recently, DSM has been successfully applied to generative image mod-
eling [32, 30, 33]. DSM was also extended to train EBMs of conditional den-
sities in [43], where it was applied to a transfer learning problem. Following
[43], we use a Gaussian noise distribution and train the DNN fy by minimizing
the loss,

2

;o (14)
2

~(i,m) _ .

0 xz
y Y 0-2

where {y””)}M , are M samples drawn from the noise distribution

P (Glys) = N (55 yi, o21).

3 Proposed Training Method

To train the DNN fy specifying our EBM p(y|x; 6) in (1), we propose a simple
vet highly effective extension of NCE [27]. Motivated by the improved per-
formance of KLD-IS compared to ML-IS on visual tracking [15], we extend
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NCE with the capability to model annotation noise. To that end, we adopt the
standard NCE noise distribution py (11) and loss (12), but instead of defining
y(0) 2 4. we sample v; ~ pg(y) and define y(0) £ 4. 4+ 1;. The distribution
pg is a zero-centered version of py in which {0}, are scaled with 8 > 0,

K

N(Yly) = = Z (43 yi o),
k: k:

Mw

Instead of training the DNN fy by learning to discriminate between noise sam-
ples {y®™}M_ " and the label y;, it thus has to discriminate between the
samples {y*™}M_ and y; 4 1;. Examples of y; + v; and {y®™M_ in
the task of bounding box regression are visualized in Figure 1. Similar to
KLD-IS, in which an assumed density of the true target value y given y; is
employed, our approach thus accounts for possible noise and inaccuracies in
the provided label y;. Specifically, our proposed training method entails sam-
pling {y™ M~ pr(yly:) and v; ~ pg(y), setting y0) £ y; + 1;, and
minimizing the following loss,

n 0y o
J(@) _ _EZI eXp{fg(xl,y ) ngN(y |yz)}

og : : .
n TS exp { fo(wi, ym) — log py (y@Em)|y;) }

(16)

As 3 — 0, samples v; ~ pg(y) will concentrate increasingly close to zero,
and the standard NCE method is in practice recovered. Our proposed training
method can thus be understood as a direct generalization of NCE. Compared
to NCE, our method adds no significant training cost and requires tuning of
a single additional hyperparameter 5. A value for 8 is selected in a simple
two-step procedure. First, we fix y(“0) = y; and select the standard deviations
{O‘k}szl based on validation set performance, just as in NCE. We then fix
{crk}szl and vary [ to find the value corresponding to maximum validation
performance. Typically, we start this ablation with 3 = 0.1. We term our
proposed training method NCE+.

4 Comparison of Training Methods

We provide a detailed comparison of the six training methods from Section 2.3
and our proposed NCE+. To that end, we perform extensive experiments on 1D
regression (Section 4.1) and object detection (Section 4.2). Our findings are
summarized in Section 4.3. All experiments are implemented in PyTorch [44]
and the code is publically available. For both tasks, further details and results
are also provided in the supplementary material.
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Table 1: Comparison of training methods for the 1D regression experiments.

ML-IS ML-MCMC-1 ML-MCMC-16 ML-MCMC-256 KLD-IS NCE SM DSM NCE+

Dxr | 0.062 0.865 0.449
Training Cost | 0.44 0.54 241

0.106 0.088  0.068 0.781 0.395 0.066
30.8 0.44 045 060 047 0.46

| | |
1 4 16 64 256 1024
Number of samples M

Figure 2: Detailed comparison of the
top-performing methods for the illustra-
tive 1D regression experiments. NCE
and NCE+ here demonstrate clear supe-
rior performance for small number of

AP (%)

—e— ML-IS
—=— KLD-IS

—— NCE ||
—— NCE+ ||

Il Il Il Il I I I
1 2 4 8 16 32 64 128
Number of samples M

Figure 3: Detailed comparison of the
top-performing methods for object detec-
tion, on the 2017 val split of COCO [45].
Missing values for ML-IS and KLD-IS
correspond to failed training due to nu-

samples M. merical issues.

4.1 1D Regression Experiments

We first perform experiments on illustrative 1D regression problems. The
DNN fy(z,y) is here a simple feed-forward network, taking x € Randy € R
as inputs. We employ two synthetic datasets, and evaluate the training methods
by how well the learned model p(y|z; 6) (1) approximates the known ground
truth p(y|x), as measured by the KL divergence Dxy.

Results A comparison of all seven training methods in terms of Dk and
training cost (seconds per epoch) is found in Table 1. For ML-MCMC, we
include results for L € {1, 16,256} Langevin steps (9). We observe that ML-
IS, KLD-IS, NCE and NCE+ clearly have the best performance. While ML-
MCMC is relatively close in terms of Dgy for L = 256, this comes at the
expense of a massive increase in training cost. DSM outperforms SM in terms
of both metrics, but is not close to the top-performing methods. The four best
methods are further compared in Figure 2, showing Dy as a function of M.
Here, we observe that NCE and NCE+ significantly outperform ML-IS and
KLD-IS for small number of samples M.
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Table 2: Comparison of training methods for the object detection experiments, on the
2017 test-dev split of COCO [45]. Our proposed NCE+ achieves the best performance.

ML-IS ML-MCMC-1 ML-MCMC-4 ML-MCMC-8 KLD-IS NCE DSM NCE+

AP (%) T 39.4 36.4 36.4 36.4 39.6 395 363 39.7
APsy(%) T 58.6 57.9 57.9 58.0 58.6 586 579 587
AP75(%) T 42.1 38.8 39.0 39.0 42.6 424 389 427
Training Cost | 1.03 2.47 7.05 13.3 1.02 1.04 384 1.09

4.2 Object Detection Experiments

Next, we evaluate the methods on the task of bounding box regression in ob-
ject detection. We employ an identical network architecture for fp(x,y) as in
[14]. An extra network branch, consisting of three fully-connected layers with
parameters 6, is thus added onto a pre-trained and fixed FPN Faster-RCNN
detector [46]. Given an image x and bounding box y € R?*, the image is
first processed by the detector backbone network (ResNet50-FPN), outputting
image features hj(x). Using a differentiable PrRoiPool [47] layer, hi(z) is
then pooled to extract features ha(z,y). Finally, ho(x,y) is processed by the
added network branch, outputting fy(x,y) € R. As in [14], predictions y* are
produced by performing guided NMS [47] followed by gradient-based refine-
ment (Section 2.2), taking the Faster-RCNN detections as initial estimates g.
Experiments are performed on the large-scale COCO dataset [45]. We use the
2017 train split (= 118 000 images) for training, the 2017 val split (= 5000
images) for setting hyperparameters, and report results on the 2017 test-dev
split (= 20 000 images). The standard COCO metrics AP, APsy and AP7s are
used, where AP is the primary metric.

Results A comparison of the training methods in terms of the COCO met-
rics and training cost (seconds per iteration) is found in Table 2. Since DSM
clearly outperformed SM in the 1D regression experiments, we here only in-
clude DSM. For ML-MCMC, results for L € {1,4,8} are included. We ob-
serve that ML-IS, KLD-IS, NCE and NCE+ clearly have the best performance.
In terms of the COCO metrics, NCE+ outperforms NCE and all other methods.
ML-IS is also outperformed by KLD-IS. The four top-performing methods are
further compared in Figure 3, in terms of AP as a function of the number of
samples M. NCE and NCE+ here demonstrate clear superior performance for
small values of M, and do not experience numerical issues even for M = 1.
KLD-IS improves this robustness compared ML-IS, but is not close to match-
ing NCE or NCE+. In terms of training cost, the four top-performing methods
are virtually identical. For ML-IS, e.g., we observe in Figure 4 that setting
M =1 decreases the training cost with 23% compared to the standard case of
M =128.

Analysis of NCE+ Hyperparameters How the value of 3 > 0 in pg (15)
affects validation performance is studied in Figure 5. Here, we observe that
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Figure 4: Effect of the number of sam- Figure 5: Effect of the NCE+ hyperpa-
ples M on training cost (seconds per iter- rameter 3 on detection performance (1),
ation), for ML-IS on object detection. on the 2017 val split of COCO [45].

Table 3: Ablation study for NCE, on the 2017 val split of COCO [45].

{ox}3_,  10.0125,0.025,0.05} {0.025,0.05,0.1} {0.05,0.1,0.2} {0.075,0.15,0.3} {0.1,0.2,0.4}
AP (%) 1 38.58 38.95 39.12 39.17 39.05

quite a large range of values improve the performance compared to the NCE
baseline (3 — 0), before it eventually degrades for 5 = 0.3. We also observe
that the performance is optimized for 5 = 0.1. In Figure 5, the standard devi-
ations {0} }X_| in pn, pg (15) are set to {0.075,0.15,0.3}. These values are
selected in an initial step based on an ablation study for NCE, which is found
in Table S4.

4.3 Discussion

The results on both set of experiments are highly consistent. First of all, ML-
IS, KLD-IS, NCE and NCE+ are by far the top-performing training methods.
ML-MCMC, the method commonly employed for generative image modeling
in recent years, does not come close to matching these top-performing meth-
ods, especially not given similar computational budgets. When studying the
performance as a function of the number of samples M, NCE and NCE+ are
the superior methods by a significant margin. In particular, this study demon-
strates that the NCE and NCE+ losses are numerically more stable than those
of ML-IS and KLD-IS. In the 1D regression problems, which employ synthetic
datasets without any annotation noise, NCE and NCE+ have virtually identical
performance. In the object detection experiments however, where we employ
real-world datasets, NCE+ consistently improves the NCE performance. On
object detection, NCE+ also improves or matches the performance of KLD-IS,
which explicitly models annotation noise and outperforms ML-IS. Overall, the
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results of the comparison suggest that our proposed NCE+ should be consid-
ered the go-to training method.

5 Visual Tracking Experiments

Lastly, we apply our proposed NCE+ to the task of visual tracking. Specifi-
cally, we consider generic visual object tracking, which entails estimating the
bounding box y € R* of a target object in every frame of a video. The target
object does not belong to any pre-specified class, but is instead defined by a
given bounding box in the initial video frame. We compare the performance
both to NCE and KLD-IS, and to state-of-the-art trackers. Code and trained
models are available at [48]. Further details are also found in the supplemen-
tary material.

Tracking Approach We base our tracker on the recent DiMP [21] and
PrDiMP [15]. The target object is thus first coarsely localized in the current
video frame via 2D image-coordinate regression of its center point, empha-
sizing robustness over accuracy. Then, the full bounding box y € R* of the
target is accurately regressed by gradient-based refinement (Section 2.2). The
two stages employ separate network branches which are trained jointly end-
to-end. As a strong baseline, we combine the DiMP method for center point
regression with the PrDiMP bounding box regression approach. We term this
resulting tracker DiMP-KLD-IS. By also modifying common training parame-
ters (batch size, data augmentation etc.), DiMP-KLD-IS significantly outper-
forms both DiIMP and PrDiMP. Our proposed tracker, termed DiMP-NCE+, is
then obtained simply by using NCE+ instead of KLD-IS to train the bounding
box regression branch. In both cases, the number of samples M = 128. As in
[21, 15], the training splits of TrackingNet [49], LaSOT [50], GOT-10k [51]
and COCO [45] are used for training. Similar to PrDiMP, our DiMP-NCE+
tracker runs at about 30 FPS on a single GPU.

Results We evaluate DiMP-NCE+ on five commonly used tracking datasets.
Tracking-Net [49] is a large-scale dataset containing videos sampled from
YouTube. Results are reported on its test set of 511 videos. We also evaluate
on the LaSOT [50] test set, containing 280 long videos (2 500 frames on aver-
age). Moreover, we report results on the UAV 123 [52] dataset, consisting of
123 videos which feature small targets and distractor objects. Results are also
reported on the 30 FPS version of the need for speed (NFS) [53] dataset, con-
taining 100 videos with fast motions. Finally, we evaluate on the 100 videos
of OTB-100 [54]. Our tracker is evaluated in terms of overlap precision (OP).
For a threshold T € [0, 1], OPy is the percentage of frames in which the IoU
overlap between the estimated and ground truth target bounding box is larger
than 7. By averaging OPr over T' € [0, 1], the AUC score is then obtained.
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Table 4: Results for the visual tracking experiments. The AUC (Success) metric is re-
ported on five common datasets. Our DiMP-NCE+ tracker significantly outperforms
strong baselines and achieves state-of-the-art performance on all datasets. For SiamR-
CNN [55], results for the ResNet50 version are given in parentheses when available.

MDNet UPDT DaSiamRPN ATOM SiamRPN++ DiMP SiamRCNN PrDiMP DiMP- DiMP- DiMP-

[56]  [57] [58] [20] [19] [21] [55] [15] KLD-IS NCE NCE+
TrackingNet 60.6  61.1 63.8 70.3 733 74.0 81.2 758 781 771 787
LaSOT 39.7 - - 515 49.6 569 64.8(62.3) 598 631 628 637
UAV123 528 545 57.7 63.2 61.3 64.3 64.9 667 666 652 672
NFS 422 537 - 58.4 - 62.0 63.9 63.5 647 643  65.0
OTB-100  67.8 702 65.8 66.9 69.6 684 70.1(68.0) 69.6 701 693  70.7

For TrackingNet, the term Success is used in place of AUC. Results in terms
of AUC on all five datasets are found in Table 4. To ensure significance, the
average AUC over 5 runs is reported for our trackers. We observe that DiMP-
NCE+ consistently outperforms both our DiIMP-KLD-IS baseline, and a vari-
ant employing NCE instead of NCE+. Compared to previous approaches, only
the very recent SiamRCNN [55] achieves results competitive with our DiMP-
NCE+. SiamRCNN is however slower than DiMP-NCE+ (5 FPS vs 30 FPS)
and employs a larger backbone network (ResNet101 vs ResNet50). Results for
the ResNet50 version of SiamRCNN are only available on two of the datasets,
on which it is outperformed by our DiMP-NCE+. More detailed results are
provided in the supplementary material.

6 Conclusion

We proposed a simple yet highly effective extension of NCE to train EBMs
p(yl|x; @) for computer vision regression tasks. Our proposed method NCE+
can be understood as a direct generalization of NCE, accounting for noise in
the annotation process of real-world datasets. We also provided a detailed com-
parison of NCE+ and six popular methods from literature, the results of which
suggest that NCE+ should be considered the go-to training method. This com-
parison is the first comprehensive study of how EBMs should be trained for
best possible regression performance. Finally, we applied our proposed NCE+
to the task of visual tracking, achieving state-of-the-art performance on five
commonly used datasets. We hope that our simple training method and promis-
ing results will encourage the research community to further explore the appli-
cation of EBMs to various regression tasks.
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Supplementary Material

In this supplementary material, we provide additional details and results. It
consists of Appendix A - Appendix D. Appendix A contains a detailed algo-
rithm for our employed prediction strategy. Further experimental details are
provided in Appendix B for 1D regression, and in Appendix C for object de-
tection. Lastly, Appendix D contains details and further results for the visual
tracking experiments. Note that equations, tables, figures and algorithms in
this supplementary document are numbered with the prefix “S”. Numbers with-
out this prefix refer to the main paper.

A Prediction Algorithm

Our prediction procedure (Section 2.2) is detailed in Algorithm S1, where A
denotes the gradient ascent step-length, 7 is a decay of the step-length and T’
is the number of iterations.

Algorithm S1 Prediction via gradient-based refinement.
Input: x>, 4, T, A\, n.

1.y < 9.
2:. fort=1,...,T do

3: PrevValue « fg(z*,y).

4: gy -+ AVyfo(z*,y).

5: NewValue < fp(z*, 7).

6: if NewValue > PrevValue then
7: Y 9.

8: else

9: A A

10: Return y.

B 1D Regression

Here, we provide details on the two synthetic datasets, the network architec-
ture, the evaluation procedure, and hyperparameters used for our 1D regression
experiments (Section 4.1). For all seven training methods, the DNN fy(x, )
was trained (by minimizing the associated loss .J(#)) for 75 epochs with a batch
size of 32 using the ADAM [59] optimizer.

II-19




Paper II — How to Train Your Energy-Based Model for Regression

Figure S1: Visualization Figure S2: Training data Figure S3: Training data
of the true p(y|x) for the  {(w;,y;)}?%90 for the first {(w;, ;)220 for the sec-
first 1D regression dataset. 1D regression dataset. ond 1D regression dataset.

B.1 Datasets

The ground truth p(y|z) for the first dataset is visualized in Figure S1. It is
defined by a mixture of two Gaussian components (with weights 0.2 and 0.8)
for x < 0, and a log-normal distribution (with ¢ = 0.0, o = 0.25) for z >
0. The training data Dy = {(4, v:)}2%" was generated by uniform random
sampling of x in the interval [—3, 3], and is visualized in Figure S2. The ground
truth p(y|z) for the second dataset is defined according to,

p(ylz) = N (y; u(x), o (z)),

p(x) = sin(z), o(z)=0.15(1+e )7L (S1)

The training data Dy = {(z;, ;) } 729" was generated by uniform random sam-

pling of x in the interval [—3, 3], and is visualized in Figure S3.

B.2 Network Architecture

The DNN fy(z, y) is a feed-forward network taking 2z € Rand y € R as inputs.
It consists of two fully-connected layers (dimensions: 1 — 10, 10 — 10) for
x, one fully-connected layer (1 — 10) for y, and four fully-connected layers
(20 — 10, 10 — 10, 10 — 10, 10 — 1) processing the concatenated (x,y)
feature vector.

B.3 Evaluation

The training methods are evaluated in terms of the KL divergence
Dxi(p(ylx) || p(y|z;0)) between the learned EBM p(y|x;0) =
efo@y) ] [ efol@9)dj and the true conditional density p(y|z). To approximate
Dxi(p(y|z) || p(ylz;0)), we compute e*(*¥) and p(y|z) for all (x,y) pairs
in a 2048 x 2048 uniform grid in the region {(x,y) € R? : x € [-3,3],y €
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[—3,3]}. We then normalize across all values associated with each x, employ
the formula for KL divergence between two discrete distributions ¢;(y) and

QQ(?J),
q1(y)
a(y)’

Dxi(q1 || ¢2) ZCA 10g
yey

(82)

and finally average over all 2048 values of x. For each dataset and training
method, we independently train the DNN fy(x, y) and compute Dxy (p(y|z) ||
p(y|z;0)) 20 times. We then take the mean of the 5 best runs, and finally
average this value for the two datasets.

B.4 Hyperparameters

The number of samples M = 1024 for all applicable training methods. All
other hyperparameters were selected to optimize the performance, evaluated
according to Section B.3.

ML-IS Following [14], we set K = 2 in the proposal distribution ¢(y|y;) in
(4). After ablation, we set 01 = 0.2, 0o = 1.6.

KLD-IS We use the same proposal distribution ¢(y|y;) as for ML-IS. After
ablation, we set o = 0.025 in p(y|y;) = N (y; ys, 021).

ML-MCMC After ablation, we set the Langevin dynamics step-length o =
0.05.

NCE To match ML-IS, we set K = 2 in the noise distribution py(y|y;) in
(11). After ablation, we set o7 = 0.1, o3 = 0.8.

DSM After ablation, we set ¢ = 0.2 in p,(§|y;) = N (J; yi, 021).

NCE+ We use the same noise distribution p (y|y;) as for NCE. After ablation,
we set 5 = 0.025.

B.5 Qualitative Results

An example of p(y|x; 6) trained using NCE on the first dataset is visualized in
Figure S4. As can be observed, this is quite close to the true p(y|z) visualized
in Figure S1. Similar results are obtained with all four top-performing train-
ing methods. Examples of p(y|z;6) instead trained using DSM and SM are
visualized in Figure S5 and Figure S6, respectively. These do not approximate
the true p(y|z) quite as well, matching the worse performance in terms of Dk
reported in Table 1.
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Figure S4: Example of Figure S5: Example of Figure S6: Example of
p(y|z; 0) trained with NCE.  p(y|z; 0) trained with DSM.  p(y|x; 0) trained with SM.

Table S1: Used step-lengths A,os and A for the object detection experiments.

ML-IS ML-MCMC-1 ML-MCMC-4 ML-MCMC-8 KLD-IS NCE DSM NCE+

Apos  0.0004 0.000025 0.000025 0.000025 0.0004  0.0004 0.000025 0.0008
Asize  0.0016 0.0001 0.0001 0.0001 0.0016  0.0016  0.0001  0.0032

C Object Detection

Here, we provide details on the prediction procedure and hyperparameters used
for our object detection experiments (Section 4.2). We employ an identical net-
work architecture and training procedure as described in [14], only modifying
the loss when using a different method than ML-IS to train fy(z,y).

C.1 Prediction

Predictions y* are produced by performing guided NMS [47] followed by
gradient-based refinement (Algorithm S1), taking the Faster-RCNN detections
as initial estimates ¢j. As in [14], we run 7" = 10 gradient ascent iterations. We
fix the step-length decay to p = 0.5, which is the value used in [14]. For each
trained model, we select the gradient ascent step-length A to optimize perfor-
mance in terms of AP on the 2017 val split of COCO [45]. Like [14], we use
different step-lengths for the bounding box position (Ays) and size (Agize). We
start this ablation with Ap,s = 0.0001, Agi,e = 0.0004. The used step-lengths
for all training methods are given in Table S1.

C.2 Hyperparameters

The number of samples M = 128 for all applicable training methods. All other
hyperparameters were selected to optimize performance in terms of AP on the
2017 val split of COCO [45].

ML-IS Following [14], we set K = 3 in the proposal distribution ¢(y|y;) in
(4) with o1 = 0.0375, 02 = 0.075, 03 = 0.15.
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Table S2: Ablation study for KLD-IS,on  Table S3: Ablation study for ML-

the 2017 val split of COCO [45]. MCMC-1, on the val split of COCO [45].
o 0.0075 0.015 00225 003 0.0375 a 0.000001  0.00001  0.0001
AP (%)1 3832 39.19 3938 3933 39.23 AP(%)1 3614 3619  36.04

Table S4: Ablation study for NCE, on the 2017 val split of COCO [45].

{ow}3_,  {0.0125,0.025,0.05} {0.025,0.05,0.1} {0.05,0.1,0.2} {0.075,0.15,0.3} {0.1,0.2,0.4}
AP (%) 1 38.58 38.95 39.12 39.17 39.05

KLD-IS We use the same proposal distribution ¢(y|y;) as for ML-IS. Based on
the ablation study in Table S2, we set o = 0.0225 in p(y|y;) = N (y; ys, o21).

ML-MCMC Based on the ablation study in Table S3, we set the Langevin
dynamics step-length o = 0.00001.

NCE To match ML-IS, we set K = 3 in the noise distribution py(y|y;) in
(11). Based on the ablation study in Table S4, we set 01 = 0.075, 02 = 0.15,
o3 = 0.3.

DSM Based on the ablation study in Table S5, we set o = 0.075 in p, (9|y;) =
N(:[L Yi, 021)'

NCE+ We use the same noise distribution px (y|y;) as for NCE. Based on the
ablation study in Table S6, we set 5 = 0.1.

C.3 Detailed Results

A comparison of the training methods on the 2017 val split of COCO [45] is
provided in Table S7.

D Visual Tracking

Here, we provide detailed results and hyperparameters for our visual tracking
experiments (Section 5). We employ an identical network architecture, train-

Table S5: Ablation study for DSM, on  Table S6: Ablation study for NCE+, on

the 2017 val split of COCO [45]. the 2017 val split of COCO [45].
o 0.0375 0.075 0.15 B 005 0.1 0.5
AP (%) 3611 3612 36.05 AP (%) 1 3927 3936 39.32
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Table S7: Comparison of training methods for the object detection experiments, on
the 2017 val split of COCO [45]. NCE+ and KLD-IS achieve the best performance.

ML-IS ML-MCMC-1 ML-MCMC-4 ML-MCMC-8 KLD-IS NCE DSM NCE+

AP (%) T 39.11 36.19 36.24 36.25 39.38 39.17 36.12 39.36
APso(%) 1 57.95 57.34 57.45 57.28 58.07 5796 5729 57.99
AP75(%) 1 41.97 38.77 38.81 38.88 4247 4207 38.84 42.63
Training Cost | 1.03 2.47 7.05 133 1.02 1.04 3.84 1.09

ing procedure and prediction procedure for DiIMP-KLD-IS, DiIMP-NCE and
DiMP-NCE-+, only the loss is modified.

D.1 Training Parameters

DiMP-KLD-IS is obtained by combining the DiMP [21] method for center
point regression with the PrDiMP [15] bounding box regression approach, and
modifying a few training parameters. Specifically, we change the batch size
from 10 to 20, we change the LaSOT sampling weight from 0.25 to 1.0, we
change the number of samples per epoch from 26 000 to 40 000, and we add
random horizontal flipping with probability 0.5. Since we increase the batch
size, we also freeze convl, layerl and layer2 of the ResNet backbone to save
memory.

D.2 Hyperparameters

The number of samples M = 128 for all three training methods.

DiMP-KLD-IS Following PrDiMP, we set K = 2 in the proposal distribution
q(yly;) in (4) with 01 = 0.05, o2 = 0.5, and we set o = 0.05 in p(y|y;) =
N(y7 Yi, 021)'

DiMP-NCE Matching DiIMP-KLD-IS, we set K = 2 in the noise distribution
pN (y|y;) in (11) with o1 = 0.05, o2 = 0.5. A quick ablation study on the vali-

Table S8: Full results on the TrackingNet [49] test set, in terms of precision, nor-
malized precision, and success (AUC). Our proposed DiIMP-NCE+ is here only out-
performed by the very recent SiamRCNN [55]. SiamRCNN is however slower than
DiMP-NCE+ (5 FPS vs 30 FPS) and employs a larger backbone network (ResNet101
vs ResNet50).

SiamFC MDNet UPDT DaSiamRPN ATOM SiamRPN++ DiMP SiamRCNN PrDiMP DiMP- DiMP- DiMP-

[60]  [56] [57) [58] [20] [19] [21] [55] [15] KLD-IS NCE NCE+
Precision 1 533 565 557 59.1 64.8 69.4 68.7 80.0 704 733 698 737
Norm. Prec. T 66.6 705 702 733 77.1 80.0 80.1 85.4 81.6 835 824 837
Success (AUC) ~ 57.1  60.6  61.1 63.8 70.3 733 74.0 81.2 758 781 771 8.7

T
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Figure S7: Success plot on LaSOT [50].
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Figure S9: Success plot on NFS [53].
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Figure S8: Success plot on UAV123 [52].

100 Success plot
— 80
x S O S
z — DIMP-NCE+ [70.7]
2 go/|—UPDT[70.4]
S — DIMP-KLD-IS [70.1]
2 — SiamRPN++ [69.6]
o 40{|—PrDiMP [69.6]
o DiMP-NCE [69.3]
2 — DiMP [68.4]
© 50l|—MDNet [67.8]
ATOM [66.3]
— DaSiamRPN [65.8]
%o 0.2 0.4 0.6 0.8 1.0

Overlap threshold

Figure S10: Success plot on OTB-100 [54].

dation set of GOT-10k [51] did not find values of o1, 03 resulting in improved

performance.

DiMP-NCE+ We use the same noise distribution py (y|y;) as for NCE. We set
B = 0.1, as this corresponded to the best performance on the object detection

experiments (Table S6).

D.3 Detailed Results

Full results on the TrackingNet [49] test set, in terms of all three TrackingNet
metrics, are found in Table S8. Success plots for LaSOT, UAV 123, NFS and
OTB-100 are found in Figure S7-S10, showing the overlap precision OP7 as

a function of the overlap threshold 7.
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Learning Proposals for Practical .
Energy-Based Regression

Abstract

Energy-based models (EBMs) have experienced a resurgence within machine
learning in recent years, including as a promising alternative for probabilis-
tic regression. However, energy-based regression requires a proposal distri-
bution to be manually designed for training, and an initial estimate has to be
provided at test-time. We address both of these issues by introducing a con-
ceptually simple method to automatically learn an effective proposal distri-
bution, which is parameterized by a separate network head. To this end, we
derive a surprising result, leading to a unified training objective that jointly
minimizes the KL divergence from the proposal to the EBM, and the negative
log-likelihood of the EBM. At test-time, we can then employ importance sam-
pling with the trained proposal to efficiently evaluate the learned EBM and
produce stand-alone predictions. Furthermore, we utilize our derived train-
ing objective to learn mixture density networks (MDN5s) with a jointly trained
energy-based teacher, consistently outperforming conventional MDN training
on four real-world regression tasks within computer vision. Code is available
athttps://github.com/fregu856/ebms proposals.

1 Introduction

Energy-based models (EBMs) [1] have been extensively studied within the
field of machine learning in the past [2, 3, 4, 5, 6]. By using deep neural
networks to parameterize the energy function [7], EBMs have recently also
experienced a significant resurgence. Most widely, EBMs are now employed
for generative modelling tasks [8, 10, 11, 12, 13, 14, 15, 16, 17, 9]. Recent
work has further demonstrated the promise of EBMs for probabilistic regres-
sion, achieving impressive results for a variety of important low-dimensional
regression tasks, including object detection, visual tracking, pose estimation,
age estimation and robot policy learning [18, 19, 20, 21, 22, 23, 24].
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S

A

r —-
Figure 1: We propose a method to automatically learn an effective MDN proposal
q(y|x; ¢) (blue) during training of the EBM p(y|x; #) (green), thus addressing the main

practical limitations of energy-based regression. The MDN g is trained by minimizing
its KL divergence to the EBM p, i.e. by minimizing Dy (p || ¢).

Probabilistic regression aims to estimate the predictive conditional distribu-
tion p(y|x) of the target y given the input = [25, 26, 27, 28, 29, 30, 31].
As its primary advantage, the EBM directly represents this distribution by a
neural network through a learnable energy function fy(x,y), as p(y|z;0) =
elo(@Y) / 7(x,0). While this flexibility allows the EBM to learn highly com-
plex and accurate distributions, it comes at a significant cost. Firstly, evaluat-
ing the resulting distribution p(y|z; 6) is generally intractable, as it requires the
computation of the partition function Z(z, §). This particularly imposes chal-
lenges for training the EBM, which often leads to application of Monte Carlo
approximations with hand-tuned proposal distributions in order to pursue max-
imum likelihood-based learning. Secondly, EBMs are known to be difficult
to sample from, which complicates their practical use at test-time. To produce
predictions, prior work [18, 19, 20, 21] resort to gradient-based refinement of
an initial estimate generated by a separately trained network.

In this work, we address both aforementioned drawbacks of this energy-based
regression approach by jointly learning a proposal distribution ¢ during EBM
training. Specifically, we parametrize the proposal using a mixture density
network (MDN) [32] ¢(y|z; ¢) conditioned on the input z. In order to maxi-
mize its effectiveness during training, we learn ¢ by minimizing its Kullback—
Leibler (KL) divergence to the EBM p. To this end, we derive a surprising re-
sult, consisting of a unified objective that jointly minimizes the KL divergence
from the proposal ¢ to the EBM p and the negative log-likelihood (NLL) of
the latter. As our result does not rely on the reparameterization trick, it is di-
rectly applicable to a wide class of proposal distributions, including mixture
models. Compared to previous approaches for training EBMs for regression,
our approach does not require tedious hand-tuning of the proposal distribution,
instead providing a fully learnable alternative. Moreover, rather than condi-
tioning on the ground-truth target y, our proposal distribution ¢ is conditioned
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on the input x. It can therefore be employed at test-time to efficiently evaluate
and sample from the EBM.

Learning the MDN ¢ according to our derived objective leads to another inter-
esting observation: MDNs trained to mimic the EBM via this objective tend
to learn more accurate predictive distributions compared to an MDN trained
with the standard NLL loss. Inspired by this finding, we apply our derived
result for a second purpose, namely to find a better learning formulation for
MDNs. When jointly trained with an energy-based teacher network according
to our objective, the resulting MDN is shown to consistently outperform the
NLL baseline on challenging real-world regression tasks. In contrast to a sin-
gle ground-truth sample, the EBM provides comprehensive supervision for the
predictive distribution ¢, leading to a more accurate model of the underlying
true distribution.

In summary, our main contributions are as follows:

* We derive an efficient and convenient objective that can be employed
to train a parameterized distribution ¢(y|z; ¢) by directly minimizing its
KL divergence to a conditional EBM.

» We employ the proposed objective to jointly learn an effective MDN pro-
posal distribution during EBM training, thus addressing the main practi-
cal limitations of energy-based regression.

» We further utilize the proposed objective to improve training of stand-
alone MDN:ss, learning more accurate predictive distributions compared
to MDNSs trained by minimizing the NLL.

* We perform comprehensive experiments on four challenging computer
vision regression tasks.

2 Background

Regression entails learning to predict targets y* € ) from inputs z* € X,
given a training set of N i.i.d. input-target pairs {(z;,v:)},, (zi,yi) ~
p(z,y). The target space ) is continuous, ) = RE for some K > 1. We
focus on probabilistic regression, which aims to not only produce a predic-
tion y*, but also estimate the full predictive conditional distribution p(y|z).
This probabilistic formulation provides a more general view of the regression
problem, allowing for the encapsulation of uncertainty, generation of multiple
hypotheses, and handling of ill-posed settings [25, 26, 27, 28, 29, 30, 31].
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2.1 Energy-Based Regression

In energy-based regression [18, 19, 20], the task is addressed by learning to
model the distribution p(y|x) with a conditional EBM p(y|x; @), defined ac-
cording to,

efo(ea) folod) g
polest) = So s, 2.0) = [ e#enag. (1)

The EBM p(y|z;0) is directly specified via fp : X x Y — R, a deep neu-
ral network (DNN) mapping any input-target pair (x,y) € X x ) to a scalar
fo(x,y) € R. The EBM in (1) is therefore highly flexible and capable of
learning complex distributions directly from data. However, the resulting dis-
tribution p(y|z; 0) is also challenging to evaluate or sample from, since its par-
tition function Z(z, 0) generally is intractable. The EBM p(y|x; 0) is therefore
quite challenging to train, and a variety of different approaches have recently
been explored [20, 33]. The most straightforward approach would be to di-
rectly minimize the NLL £(0) = Zfil log Z(x;,0) — fo(x;,yi). While exact
computation of £(#) is intractable, importance sampling can be utilized to ap-
proximate the log Z(x;,6) term. The DNN fy(x,y) can therefore be trained
by minimizing the resulting loss,

J0) = L3 g (L g 2

where {yfm) M_ .~ q(y) are M samples drawn from a proposal distribution

q(y). The aforementioned approach is relatively simple, yet it has been shown
effective for various regression tasks within computer vision [18, 19, 20]. In
these works, the proposal ¢(y) is set to a mixture of K Gaussian components
centered at the true target y;, i.e. ¢(y) = + Zle N (y; yi, 021). Training thus
requires the task-dependent hyperparameters K and {a,%}szl to be carefully
tuned, limiting general applicability. Moreover, this proposal ¢(y) depends on
y; and can therefore only be utilized during training. To produce a prediction
y* at test-time, previous energy-based regression methods [18, 19, 20, 21, 22,
23] employ gradient ascent to refine an initial estimate ¢j. This prediction strat-
egy therefore requires access to a good initial estimate. Hence, most previous
works [18, 19, 20, 21] even rely on a separately trained DNN to provide ¢,
further limiting general applicability.

2.2 Mixture Density Networks

Alternatively, the regression task can be addressed by learning to model the
conditional distribution p(y|z) with an MDN ¢(y|z; ¢) [32, 30, 34, 31]. An
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MDN is a mixture of K components of a certain base distribution. Specifically
for a Gaussian MDN, the distribution ¢(y|x; ¢) is defined according to,

aylo; ¢ Zw N (s 1l (2), 087 (2)1) (3)

(%)

where the set of Gaussian mixture parameters {7r( sHe 504 )} 1—1 is outputted
by a DNN g4 (). In contrast to EBMs, the MDN distribution ¢(y|z; ¢) is by
design simple to both evaluate and sample from. The DNN g4 (z) can thus
be trained by directly minimizing the NLL L(¢) = ZZ]\L 1 — log q(yilzi; ¢).
While MDNs generally are less flexible models than EBMs, they are still ca-
pable of capturing multi-modality and other more complex features of the true
distribution p(y|x). MDNs thus offer a convenient yet quite flexible alterna-
tive to EBMs. Training an MDN ¢(y|x; ¢) via the NLL is however known
to occasionally suffer from certain inefficiencies such as mode-collapse, and
various more sophisticated training methods have therefore been explored [35,
36, 30, 37, 38].

3 Method

We first address the main practical limitations of energy-based regression by
proposing a method to automatically learn an effective proposal ¢(y; ¢) during
training of the EBM p(y|z;0) in (1). To enable ¢(y;¢) to be utilized also
at test-time, we condition it on the input z instead of on the true target y;.
We further require the resulting proposal distribution ¢(y|x; ¢) to be flexible,
yet efficient and convenient to evaluate and sample from. In this work, we
therefore parametrize the proposal ¢(y|x; ¢) using an MDN.

When training the EBM p(y|x; #) by minimizing the approximated NLL in (2),
we wish to use the proposal ¢(y|x; ¢) that yields the best possible NLL approx-
imation. In general, this is achieved when the proposal equals the EBM, i.e.
when q(y|x; ¢) = p(y|z;0)!. We therefore aim to learn the proposal param-
eters ¢ by directly minimizing the KL divergence to the EBM, Dk (p || q).
While this approach is conceptually simple and attractive, exact computation
of Dxr(p || ¢) is intractable. This calls for an effective and efficient approxi-
mation, which can easily be employed during training. In Section 3.1 we show
that such an approximation, interestingly enough, is achieved by simply mini-
mizing the objective (2) w.r.t. the proposal ¢(y|z; ¢).

In Section 3.2, we further employ this result to design a method for jointly
learning the EBM p(y|x; #) and MDN proposal ¢(y|z; ¢). There, we also de-
tail how ¢(y|z; ¢) can be utilized with importance sampling to approximately

'Details are provided in the supplementary material.
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evaluate and sample from the EBM at test-time. Lastly, in Section 3.3 we pro-
pose to utilize our derived approximation of Dk (p || ¢) as an additional loss
for training MDNs. We argue that guiding an MDN towards a more flexible
and accurate distribution learned by the EBM provides more extensive super-
vision for the MDN in a regression setting, leading to improved results.

3.1 Learning the Proposal to Match an EBM

We have a parameterized distribution ¢(y|x; ¢) that we want to be a close
approximation of the EBM p(y|x;0). Specifically, we want to find the pa-
rameters ¢ that minimize the KL divergence between ¢(y|z; ¢) and the EBM
p(y|x; 0). Therefore, we seek to compute V4 Dky (p(y|z;0) || q(y|z; 9)), ie.
the gradient of the KL divergence w.r.t. ¢. The gradient V 4Dy is generally
intractable, but can be conveniently approximated by the following result.

Result 1. For a conditional EBM p(y|x;0) = el*@¥) / [ efo@9) 4y and distri-
bution q(ylx; ¢),
M (m)
1 efe(x7y )
VeDxL(p || @) = Vg log ( >7 “
oDralplla) = Valoe 57 0 Lo

where {y™N1\M_ are M independent samples drawn from q(y|x; ¢).

m=1

A complete derivation of Result 1 is provided in the supplementary material.
Note that the samples {y(™ }M_, in (4) are drawn from g¢(y|x; ¢) but not
considered functions of ¢, making this approximation particularly simple to
compute in practice. Importantly, the approximation (4) does not rely on the
reparameterization trick and is therefore directly applicable for a wide class
of distributions ¢(y|z; ¢), including mixture models. Given data {z;} |, Re-
sult 1 implies that g(y|z; ¢) can be trained to approximate the EBM p(y|z; 0)

by minimizing the loss,

M {m))

1 Y 1 fo(@iy;
T (6) = > log (M 3 e>, ()
i=1

=™ e ¢)

where {ygm)}%zl ~ q(y|zi; ¢). Note that Jxi (¢) is identical to the first term
of the EBM loss J(#) in (2). In fact, since the second term fp(x;,y;) in (2)
does not depend on ¢, (2) can be used as a joint objective for training both
q(ylz; ¢) and the EBM p(y|z; 0).
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3.2 Practical Energy-Based Regression

We first employ our Result 1 to jointly train the EBM p(y|z;6) =
efo@v) / [ efo@9)dy and the MDN proposal ¢(y|z; ¢). We define the MDN
q(y|x; ¢) by adding a second network head g, onto the same backbone feature
extractor shared with the EBM DNN f9 The MDN head g4 outputs the Gaus-

sian mixture model parameters {7r( ,ug) ) ¢> } i1, as defined in (3). The
resulting overall network architecture is 1llustrated in Figure 1.

Training

We train the EBM p(y|z;6) and MDN proposal ¢(y|x; ¢) jointly using stan-
dard techniques based on stochastic gradient descent At each iteration, we
first predict the MDN mixture parameters {ﬂ' 6 ,uék ' 0 } i, and draw M
samples {yZ )}m 1 ~q(y|zi; ¢) from the resulting distribution. The MDN pa-
rameters ¢ are then updated via Jx (¢) in (5), while the EBM parameters 6 are
updated via J () in (2). In fact, this can be implemented by jointly minimizing
(2) w.r.t. both # and ¢.

EBMs can however be trained also via various alternative approaches, includ-
ing noise contrastive estimation (NCE) [39, 40]. How EBMs should be trained
specifically for regression tasks was extensively studied in [20], concluding
that NCE should be considered the go-to method. NCE entails training the
EBM DNN fy by minimizing the loss,

N

Ince(0 Z

exp{fo(zsi, y; ))—logq(y@))} (6)
M )

> expfoei, ™) ~logaly")}

T (6)=log

where y( ) A = y;, and {y )} _, are M samples drawn from a noise distri-
bution ¢(y ) The NCE loss Jncg(f) in (6) can be interpreted as the softmax

cross-entropy loss for a classification problem, distinguishing the true target

y; from the M noise samples {yl(m) M_ "~ q(y). Moreover, Jycg(0) has

much similarity with the importance sampling-based loss J(#) in (2) [40, 41].
In particular, the noise distribution ¢(y) in NCE directly corresponds to the
the proposal ¢ in (2). In fact, all prior work [20, 21, 22] on energy-based re-
gression using NCE has employed the same manually designed distribution
qly) = % S N(y; i, a21). Due to the close relationship between NCE
and importance sampling, our approach for learning the proposal distribution
q is also applicable for NCE-based training of the EBM. In this work, we there-
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Figure 2: An illustrative 1D regression problem [20], demonstrating the effectiveness
of our proposed method to jointly train an EBM p(y|z; §) and MDN proposal ¢(y|z; ).
In this example, the MDN has K = 4 components. The EBM is trained using NCE
with ¢(y|z; ¢) acting as the noise distribution, whereas the MDN is trained by mini-
mizing its KL divergence to p(y|z; 6), i.e. by minimizing Dk (p || q).

fore adopt the NCE loss to train the EBM p(y|z; ), since it has been shown to
achieve favorable results [20].

Our approach still entails jointly training the EBM p(y|z;60) and MDN

q(y|x; @), but employs NCE with ¢(y|x; ¢) acting as a noise distribution for
training the EBM. At each iteration we thus draw samples {yl(m) M~
q(y|zi; @), update ¢ via the loss Jxi(¢) in (5), and update 6 via Jnce(6) in
(6). Note that the update of the MDN parameters ¢ only affects the added
network head in Figure 1, not the feature extractor. The effectiveness of this
proposed joint training method is demonstrated on an illustrative 1D regression
problem in Figure 2. In the supplementary material (Figure S3), we also show
an example of how both the EBM and the MDN proposal iteratively converge

towards the ground truth during joint training.

Training an EBM using our joint training method is somewhat slower than us-
ing standard NCE with the manually designed ¢(y) = % Zszl N (y; yi, 021),
since we now also have to update the added network head g, of the MDN pro-
posal at each iteration. For both methods, the main computational bottleneck is
however the backbone feature extractor. In fact, our proposed method usually
requires less total training in practice, since the task-dependent hyperparame-
ters K and {07} | have to be tuned for the NCE baseline.

Prediction

To avoid evaluating the intractable Z(x*,0) at test-time, previous work
on energy-based regression [18, 19, 20, 21] approximately compute
argmax,, p(y|z*;¢) = argmax, fp(z*,y) to produce a prediction y*. Specif-
ically, T steps of gradient ascent, y < y + AV, fo(2*,y), is used to refine
an initial estimate ¢, moving it towards a local maximum of fy(z*,y). While
shown to produce highly accurate predictions, this approach requires a good
initial estimate ¢ to be provided at test-time, limiting its general applicability.
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Figure 3: We extend our method of jointly training an EBM p(y|x; #) (green) and
MDN ¢(y|z; ¢) (blue), improving MDN training. Instead of defining the MDN by
adding a network head onto the EBM (Figure 1), the MDN is now defined in terms of
a full DNN gg4.

In contrast to previous work [18, 19, 20, 21], we have access to a proposal
q(y|x; ¢) that is conditioned only on the input = and thus can be utilized also at
test-time. Since our MDN proposal ¢(y|x; ¢) has been trained to approximate
the EBM p(y|x; ), it can be utilized with self-normalized importance sam-
pling [42] to efficiently approximate expectations [E, w.r.t. the EBM p(y|z; ),

M

- [t~ 3°

fo(z,yt™) ( ; 2
pm e /a(y'"™ |z; ¢)

SM L efo@y®) Jq(yO|z; ¢)

Here, {y"™ }M_ ~ q(y|z; ¢) are samples drawn from the MDN proposal, and
&(y) is the quantity over which we are taking the expectation. For example,
setting {(y) = y in (7) enables us to approximately compute the EBM mean.
In this manner, we can thus directly produce a stand-alone prediction y* for the
EBM p(y|x;#). Using the same technique, we can also estimate the variance
of the EBM as a measure of its uncertainty.

Note that we can also draw approximate samples from the EBM p(y|z; 6) by
re-sampling with replacement from the set {(" }M q(y|x; @) of proposal
samples, drawing each y(™) with probability w(™ [43] We demonstrate this
sampling technique in Figure S4 in the supplementary material. There, we
observe that the technique produces accurate EBM samples even when the
proposal is unimodal and thus not a particularly close approximation of the
EBM.
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3.3 Improved MDN Training

Lastly, we employ Result 1 to improve the training of MDNs ¢(y|x; ¢). We
simply extend our proposed approach for jointly training an EBM p(y|z; 0)
and MDN proposal ¢(y|z; ¢) from Section 3.2. Instead of defining the MDN
by adding a network head onto the EBM (Figure 1), we now define ¢(y|z; ¢)
in terms of a full DNN gy, as illustrated in Figure 3. Now, we thus train two
separate DNNs fy and g4. As in Section 3.2, we train the EBM p(y|x 6) and

MDN ¢q(y|z; ¢) jointly. At each iteration, we draw samples {yZ M~

—
q(y|x;; @) and update 6 via the loss Jncg(f) in (6). The EBM is thus trained
using NCE with the MDN acting as a noise distribution. At each iteration, we

also update the MDN parameters ¢ via the loss,

N M (m)
1«1 1 efo(@iyi™)
Jnon(9) =+ Y 5 log < Yo —
N i=1 2 m=1 Q(yl |95u ?)
The MDN ¢(y|z;¢) is thus trained by minimizing a sum of its NLL
—log q(yi|xs; ¢) and the Jxyp () loss in (5). Compared to conventional MDN
training, we thus employ our approximation of Dk (p || ¢) as an additional
loss, guiding q(y|z; ¢) towards the EBM p(y|z; 0).

1
+) g leeatuiio. ©

In contrast to MDNs, EBMs are not restricted to distributions which are con-
venient to evaluate and sample. The EBM p(y|x; 0) is thus generally a more
flexible model than ¢(y|z; ¢) and therefore able to better approximate the un-
derlying true distribution p(y|z). Compared to MDNs, which define a dis-

tribution ¢(y|z; ¢) by mapping x to the set {7r¢ ’“Ezﬁ O (k }k 1> the EBM

p(ylz; 0) = efe@v)/ [efol@d)qy also offers a more dlrect representation of
the distribution via its scalar function fy(x,y), potentially leading to a more
straightforward learning problem. Therefore, we argue that guiding the MDN
q(y|z; ¢) towards the EBM p(y|x; 6) during training via the loss Jypn(¢) in
(8) should help mitigate some of the known inefficiencies of MDN training.
We note that our proposed joint training approach is twice as slow compared
to conventional MDN training, as two separate DNNs fj and g4 are updated
at each iteration. After training, the EBM can however be discarded and does
therefore not affect the computational cost of the MDN at test-time.

4 Related Work

Our proposed approach to automatically learn a proposal during EBM train-
ing is related to the work of [44, 45, 46, 47], training EBMs for generative
modelling tasks by jointly learning an auxiliary sampler via adversarial train-
ing. We instead train conditional EBMs for regression and are able to derive a
particularly convenient KL divergence approximation (Result 1).
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Table 1: Results for the EBM 1D regression experiments. Results are in terms of
approximate KL divergence for the first dataset [20], and in terms of approximate
NLL for the second [58].

NCE Ours
Dataset | 01=0.05 01=0.1 01=02 01=04 01=08 | K=1 K=4 K=16
[20] 0.042 0.036 0.040 0.042 0.042 0.038 0.032 0.035
[58] 2.30 1.98 1.72 1.67 1.70 1.69 1.67 1.65

Our approach is also inspired by the concept of cooperative learning [48, 49, 50,
51], which entails jointly training an EBM and a generator network via Markov
chain Monte Carlo (MCMC) teaching. Specifically, the generator serves as a
proposal and provides initial samples which are refined via MCMC to approx-
imately sample from the EBM, training the EBM via contrastive divergence.
Then, the generator network is trained to match these refined MCMC samples
using a standard regression loss. Cooperative learning has recently also been
extended to train EBMs for conditional generative modelling tasks [52, 53].
While our proposed method also entails jointly training conditional EBMs and
proposals, we specifically study the important application of low-dimensional
regression. In this setting, MCMC-based training of EBMs has been shown
highly inefficient [20]. By deriving Result 1, we can instead employ the more
effective training method of NCE, and train the proposal by directly minimiz-
ing its KL divergence to the EBM. Since MCMC is not employed, our pro-
posed method is also computationally efficient, and very simple to implement,
compared to cooperative learning.

Our method to improve the training of an MDN by guiding it towards an EBM
is related to [15], who train a generative flow-based model jointly with an
EBM through a minimax game. In contrast, our joint training method is non-
adversarial and can even be implemented by directly minimizing one unified
objective. On a conceptual level, our MDN training approach is also related
to work on teacher-student networks and knowledge distillation [54, 55, 56,
57]. In a knowledge distillation problem, a teacher network is utilized to im-
prove the performance of a more lightweight student network. While knowl-
edge distillation for regression is not a particularly well-studied topic, it has
been studied for image-based regression tasks in very recent work [57]. A
student network is there enhanced by augmenting its training set with images
and pseudo targets generated by a conditional GAN and a pre-trained teacher
network, respectively. In contrast, our approach entails distilling the condi-
tional EBM distribution p(y|x; 6) into a student MDN for each example in the
original training set. Furthermore, our approach trains the teacher EBM and
student MDN jointly, where the student MDN generates proposal samples used
for training the EBM teacher.
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Table 2: Results in terms of approximate NLL for the EBM steering angle prediction
experiments.

NCE Ours
01=0.1,00=20 o01=1,00=20 01=2,00=20 o01=1,00=10 o1=1,090=40 K=4
1.5940.08 1.5140.05 1.564+0.04 2.03+£0.14 1.39+0.02 ‘ 1.584+0.13

5 Experiments

We perform comprehensive experiments on illustrative 1D regression prob-
lems and four image-based regression tasks, which are all detailed below. We
first evaluate our proposed method for automatically learning an effective pro-
posal during EBM training in Section 5.1. There, we compare our EBM train-
ing method with NCE, achieving highly competitive performance across all
five tasks without having to tune any task-dependent hyperparameters. In Sec-
tion 5.2, we then evaluate our proposed approach for training MDNs. Com-
pared to conventional MDN training, we consistently obtain improved test
log-likelihoods. All experiments are implemented in PyTorch [59]. Example
model and training code is found in the supplementary material, and our com-
plete implementation is also made publicly available. All models were trained
on individual NVIDIA TITAN Xp GPUs.

1D Regression We study two illustrative 1D regression problems with x € R
and y € R. The first dataset is specified in [20] and contains 2 000 training
examples. It is visualized in Figure 2. The second dataset is specified in [58],
containing 1 900 test examples and 1 700 examples for training.

Steering Angle Prediction Here, we are given an image x from a forward-
facing camera mounted inside of a car. The task is to predict the corresponding
steering angle y € R of the car at that moment. We utilize the dataset from [60,
61], containing 12271 examples. We randomly split the dataset into training
(80%) and test (20%) sets. All images x are of size 64 x 64.

Cell-Count Prediction Given a synthetic fluorescence microscopy image x,
the task is here to predict the number of cells y € R in the image. We utilize
the dataset from [60, 61], which consists of 200 000 grayscale images of size
64 x 64. From this dataset, we randomly draw 10 000 images each to construct
training and test sets. An example image « is visualized in Figure 1.

Age Estimation In age estimation, we are given an image x of a person’s face
and are tasked with predicting the age y € R of this person. We utilize the
UTKFace [62] dataset, specifically the processed version provided by [60, 61].
This dataset contains 14 760 examples, which we randomly split into training
(80%) and test (20%) sets. All images x are of size 64 x 64.
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Table 3: Results in terms of approximate NLL for the EBM cell-count prediction
experiments.

NCE Ours
01=0.1,00=40 o01=1,00=40 01=2,00=40 o01=1,00=20 o01=1,00=80 K=4
2.714+0.07 2.64+0.05 2.65+0.05 3.12+0.37 2.70+0.05 ‘ 2.66+£0.03

Table 4: Results in terms of approximate NLL for the EBM age estimation experi-
ments.

NCE Ours
01=0.01,00=20 01=0.1,00=20 o01=1,00=20 01=0.1,00=10 07=0.1,00=40 K=4
4.18+0.30 3.81+0.18 4.13+0.48 3.97+0.21 4.47+0.25 \ 4.30+0.30

Head-Pose Estimation In this case, we are given an image x of a person, and
the task is to predict the orientation y € R3 of this person’s head. Here, y is
the yaw, pitch and roll angles of the head. We utilize the BIWI [63] dataset,
specifically the processed version provided by [64]. We employ protocol 2 as
defined in [64], giving 5 065 test images and 10 613 images for training. All
images x are of size 64 x 64.

5.1 EBM Experiments

We first evaluate our proposed method for automatically learning an effective
proposal during EBM training, by performing extensive experiments on all
five regression tasks.

1D Regression The EBM DNN fy(x,y) is here a simple feed-forward net-
work, taking z € R and y € R as inputs. Separate sets of fully-connected
layers extract features h, € R'? from z and h, € R!° from y. The two fea-
ture vectors are then concatenated and processed to output fy(z,y) € R. The
MDN network head g4(z) takes the feature h, € R as input and outputs
{w((z)k), bek), Uék)}szl. We use the ADAM [65] optimizer to jointly train fy
and g4. For the first dataset, we follow [20] and evaluate the training meth-
ods in terms of how close the EBM p(y|z;#) is to the known ground truth
p(y|x), as measured by the (approximately computed) KL divergence. For the
second dataset [58] we approximately compute the test set NLL of the EBM
p(yl|x; 0), by evaluating fp(x,y) at densely sampled y values in an interval
[Ymins Ymax)- We compare our proposed approach with training the EBM using
NCE, employing the noise distribution ¢(y) = % 22:1 N (y; yi,o21). Fol-
lowing [20], we set o1 = 0.1, 09 = 8c1. We also report results for the values
o1 € {0.05,0.2,0.4,0.8}. For our proposed approach, we report results for
using K € {1,4,16} components in the MDN proposal. We train 20 net-
works for each setting and dataset, and report the mean of the 5 best runs. The
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Table 5: Results in terms of approximate NLL for the EBM head-pose estimation
experiments.

NCE Ours
01=0.1,00=20 o01=1,00=20 01=2,02=20 o01=1,00=10 o01=1,02=40 K=4

13.68£0.10 10.99+0.29 10.85£0.11 10.73£0.19 11.20+£0.15 ‘ 9.51+0.07

results are found in Table 1. We observe that our proposed training method
achieves highly competitive performance for all values of K. For NCE, the
performance varies quite significantly with o, which would have to be tuned
for each dataset.

Image-Based Regression We employ a virtually identical network architec-
ture for all four image-based regression tasks, only making minor modifica-
tions for the head-pose estimation task to accommodate the higher target di-
mension y € R3. The EBM DNN fy(x, ) is composed of a ResNet18 [66]
that extracts features h, € R5'? from the input image 2. From the target
y, fully-connected layers extract features h, € R'?®. After concatenation of
hy and h,, fully-connected layers then output fy(x,y) € R. The MDN net-
work head g, () takes the image features h, € R°'? as input and outputs
{wék), Mfﬁk),oék)}szl. Again, we use ADAM to jointly train fg and g4. We
evaluate the training methods by approximately computing the test set NLL of
the EBM p(y|z; 0). We compare our proposed approach with training the EBM
using NCE, employing the noise distribution ¢(y) = 3 22:1 N (y; yi, 021).
For each of the four tasks, we initially set {o1, 02} to what was used for age es-
timation and head-pose estimation in [19] and then carefully tune them further.
Based on the 1D regression results in Table 1, we use K = 4 components in
the MDN proposal for our proposed approach. We train 20 networks for each
setting and dataset, and report the mean of the 5 best runs. The results are found
in Table 2 to Table 5. We observe that our proposed training method achieves
highly competitive performance. In particular, our method significantly out-
performs the NCE baseline on the more challenging head-pose estimation task
(Table 5), which has a multi-dimensional target space. Note that we use an
identical architecture for the MDN proposal in our training method across all
four tasks, while the task-dependent NCE hyperparameters {0, 02} are tuned
directly on each of the corresponding zest sets. Thus, NCE is here a very strong
baseline.

5.2 MDN Experiments

Lastly, we perform experiments on the four image-based regression tasks
to evaluate our proposed approach for training MDNs ¢(y|z;¢). For the
EBM DNN fy(x,y), an identical network architecture is used as in the EBM
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Table 6: Results in terms of NLL for the MDN experiments on four image-based
regression tasks.

NLL Ours
Task K=4 K=38 K=16 K=4 K=8 K=16
Steering angle 1.45+0.13  1.254+0.05 - 1.00+0.03 1.01+0.04 -
Cell-count 2.804+0.09  2.90+0.06 - 2.804+0.06 2.75+0.06 -
Age 4.88+0.21  4.71+0.35 - 3.57+0.28 3.65+0.18 -
Head-pose 11.02£0.16 10.684+0.39 10.71+0.17 | 8.69+0.10 8.79+0.06 8.7740.09

experiments (Section 5.1). The MDN network g4(x) is now a full DNN.
It consists of a ResNetl8 that extracts image features h, € R°2 and a
head of fully connected layers that takes h, € R52 as input and outputs
{ ¢ ,u ¢ ) o k)}K . As described in Section 3.3, the MDN DNN g is trained
by minimizing the loss Jupn(¢) in (8), whereas fy is trained via Jycg(f) in
(6). As in the previous experiments, ADAM is used to jointly train fy and
gs- We compare our proposed approach with the conventional MDN train-
ing method, i.e. minimizing the NLL Zf\il —log q(yi|xs; ¢). We evaluate the
training methods in terms of test set NLL, for MDNs with K € {4,8, 16}
components. We train 20 networks for each setting and dataset, and report the
mean of the 5 best runs. The results are found in Table 6. We observe that
our proposed training method consistently outperforms the baseline of pure
NLL training. For the steering angle prediction and age estimation tasks, our
approach achieves substantial improvements. Moreover, in the particularly
challenging head-pose estimation task, our approach outperforms the standard
MDN by a significant margin.

6 Conclusion

We derived an efficient and convenient objective that can be employed to train a
parameterized distribution ¢(y|x; ¢) by minimizing its KL divergence to a con-
ditional EBM p(y|z; ). We then applied the derived objective to jointly learn
an effective MDN proposal distribution during EBM training, thus addressing
the main practical limitations of energy-based regression. We evaluated our
proposed EBM training method on illustrative 1D regression problems and
real-world regression tasks within computer vision, achieving highly competi-
tive performance without having to tune any task-dependent hyperparameters.
Lastly, we employed the derived objective to improve training of stand-alone
MDN:s, consistently obtaining more accurate predictive distributions compared
to conventional MDN training. Future directions include estimating the EBM
uncertainty via test-time use of the trained MDN proposal, and applying our
MDN training approach to additional tasks.
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Supplementary Material

In this supplementary material, we provide additional details and results. It
consists of Appendix A - Appendix G. After discussing limitations and societal
impacts in Appendix A, we provide implementation details in Appendix B.
Then, we describe all utilized datasets more closely in Appendix C. We then
provide a complete derivation of Result 1 in Appendix D. Additional results
for the 1D regression task is then provided in Appendix E. Lastly, Appendix F
and Appendix G contain example model and training code. Note that figures
in this supplementary material are numbered with the prefix “S”. Numbers
without this prefix refer to the main paper.

A Limitations & Societal Impacts

Our approach is primarily intended for regression tasks, where the target space
has a limited number of dimensions. For each training sample, several target
values are sampled from the proposal distribution. Our approach is therefore
not intended to scale to very high-dimensional generative modeling tasks, such
as image generation.

Training an EBM using our proposed method in Section 3.2 is somewhat
slower than using the NCE baseline method, since we also have to update an
MDN proposal at each iteration. The NCE baseline however requires hyperpa-
rameters to be tuned specifically for each task at hand. The fotal environmental
impact due to training is therefore likely smaller for our proposed method. Our
proposed approach for training MDNs in Section 3.3 does however not offer
similar benefits compared to conventional MDN training, and is twice as slow
to train. This issue would be mitigated to a certain extent by sharing parts of
the network among the EBM and MDN, which could be explored in future
work.

B Implementation Details

We train all networks for 75 epochs with a batch size of 32. The number of
samples M is always set to M = 1024. All networks are trained on individual
NVIDIA TITAN Xp GPUs. Training 20 networks for a specific setting and
dataset on one such GPU takes at most 24 — 48 hours. Producing the results in
Table 1 to Table 6 thus required approximately 50 GPU days of training. We
utilized an internal GPU cluster.
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Figure S1: Training data {(7;,v;)}?°9° Figure S2: Training data {(x;,y;)}:79°
for the first 1D regression dataset [20]. for the second 1D regression dataset [5 8]

PyTorch code defining the network architecture used for the head-pose estima-
tion task in Section 5.1 is found in Appendix F below. PyTorch code for the
corresponding main training loop is found in Appendix G.

In Section 5.1, the EBM p(y|z; 0) = efe(®@¥) / [ efe(@9)dj is evaluated by ap-
proximately computing its test set negative log-likelihood (NLL). We do so by
evaluating fy(x,y) at densely sampled y values in an interval [Ymin, Ymax]- For
the second 1D regression dataset, we evaluate at 8 192 values in [—12.5, 12.5].
For steering angle prediction, 20 000 values in [—100, 100]. For cell-count pre-
diction, 19900 values in [1,200]. For age estimation, 5900 values in [1, 60].
For head-pose estimation, 27000 values in {z € R3 : z; € [-80,80],i =
1,2,3}.

C Dataset Details

The training data for the two 1D regression problems is visualized in Figure S1
and Figure S2.

For steering angle prediction, cell-count prediction and age estimation, our
utilized datasets from [60, 61] are all available at https://github.com/
UBCDingXin/improved CcGAN.

The original age estimation dataset UTKFace [62] is available at https:
//susangqg.github.io/UTKFace/, for non-commercial research pur-
poses only. The dataset consists of images collected from the internet, i.e. im-
ages collected without explicitly obtained consent to be used specifically for
training age estimation models. Thus, we choose to not display any dataset
examples.

For head-pose estimation, the BIWI [63] dataset is available for research pur-
poses only. The dataset was created by recording 20 people (research subjects)
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while they freely turned their heads around. The processed version provided by
[64] that we utilize is availableat ht tps: //github.com/shamangary/
FSA-Net. Since the dataset images could potentially contain personally iden-
tifiable information, we choose to not display any dataset examples.

D Derivation of Result 1

To derive Result 1 in Section 3.1 of the main paper, we first rewrite the KL
divergence V 4Dk (p(y|z; 0) || g(y|z; ¢)) according to,

p(ylz; 0)

BI 7 g
a(ylz; )Y

Vo Dxo (p(ulz:0) || a(vlas 8)) = Vg / plylz: 0) log

p(y|z; 0)
B9 g
a(ylz; )™

= /p(ylx; 9)V¢<10gp(y\fv; 0) — log q(ylx; ¢))dy

= /p(ylm;G)W log

= —/p(y\m;é)w log q(ylz; ¢)dy
1

/ i (ylz; $)d
;
[ ele@9)dy q y!:v ®) Vetly Y

1
= [efeley)_— )
B fefe(z,y)dy/e q(y,x;(b)VM(y!w@)dy

Then, we approximate the two integrals using Monte Carlo importance sam-
pling,

1 1
—_—— f9($7y)7 .
fefe(m?)dg /6 a(ylz; 9) V¢Q(y|xa ¢)dy

1 fo(z,y)
- _fefg(z,y)dy / q(ey‘m; $)2 (V¢q(y|x; ¢))Q(y|x7 ¢)dy
1
= _fefe(m ) ( ’.CL' ¢)dy/q(y|fb‘,¢)2(

a(ylz:d) 4
o fo(@y™)

1 1 H
efolzv(™) <M Z q(y(m)|$; ¢)QV¢Q(?/ |; ¢)> )

MZm Lg(y™zg) = m=1

ef@ ($7y)

Vea(ylz;o))a(ylz:¢)dy
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where {y(™}M_, are M independent samples drawn from q(y|x; ¢). Finally,
we further rewrite the resulting expression according to,

1 <1 M folzy™)
M £~ q(y(™]a; ¢)?

M

1 1 " 1
- Jo(z,y¢ ))V _—
elo (@™ <M Ze ¢Q(y(m)\$3 ¢)>

MZm Lq(ym ;) m=1

M (m)
1 1 fol(zyt™)

— S E V¢67
elo ™) \ M q(y™mlz; ¢)

MZm 1 gy z;0) m=1

1 v (1 i efo@y™) )
— efo(@ y(m))y ¢ M T
MZm 1W m=1 q(y |.’IJ, ¢)

<1 i ooy >_1v (1 i”‘: o folay™) )
TAM = q(ymae)) T O\M A g(y ™z ¢)

1 M
= Volog (M 2 L ¢>>'

Vsa(y™|a; ¢)>

efo(z,y(™))
MZW La(y™]z;0)

D.1 Best Possible Proposal

We here expand on the footnote on page 5 of the main paper. When training
the EBM p(y|z; ) = e/*(®¥) / Z(x,0) by minimizing the approximated NLL
in (2), we wish to use the proposal ¢(y|z; ¢) that yields the best possible NLL
approximation. In general, this is achieved when the proposal equals the EBM,
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i.e. when q(y|z; ¢) = p(y|x; 6). To see why this is true, we set ¢ = p in (2),

1Y 1
SONTED>
=1

m=1 Q(yz(m))

1 N 1 M JACIE: ))
= Nzlog (M Z m) — fo(@i, yi)

e
m=1 p(yz( ’.T“@)

efe (1'1, m,) )

> = fo(@i, ui)

i=1
N M (m)
1 1 ef@(xivyi )
= — 1 s - i Ji
N ; 8 (M mZ::l efe(mi,yf,m))/Z(xi,H)> Jotees- )
1 & 1
1 N
- NZlogZ(xz, 0) — fo(zi,yi)
=1
N
1 efs(fﬂ ayl)
= _ 1
N; og<Z(xu€)>

1
=+ 2~ logp(yilzi; 0),
i=1

which corresponds to the exact NLL objective.

E Additional Results

Figure 2 in the main paper visualizes the fully trained EBM and MDN proposal,
i.e. after 75 epochs of training. In Figure S3, we instead visualize the EBM and
MDN after 5 (top row), 10, 15, 20 and 25 (bottom row) epochs of training. We
observe that the EBM is closer to the ground truth early on during training,
guiding the MDN via the Jg (¢) loss in (5).

In Figure S4, we visualize the fully trained EBM and MDN proposal when
instead using just X' = 1 component in the MDN. We observe that the EBM
still is close to the ground truth. Apart from visualizing the EBM using the
technique from [20] (evaluating fy(x,y) at densely sampled y values in the
interval [—3, 3] for each z), we here also demonstrate that we can draw ap-
proximate samples from the EBM using the method described in Section 3.2.2.
For each z, we draw samples {y(™ }1024 ~ ¢(y|x; ¢) from the proposal, com-
pute weights {w (™ }1024 according to (7), and then re- sample one value from
this set {y(™)}1024 (drawing each y("™ with probability w(™)). We observe
in Figure S4 that this method produces accurate EBM samples, even when the
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Ground Truth EBM MDN Proposal

Figure S3: An illustrative 1D regression problem [20], demonstrating the effective-
ness of our proposed method to jointly train an EBM p(y|z; ) and MDN proposal
q(y|x; ¢). In this example, the MDN has K = 4 components. The EBM is trained
using NCE with ¢(y|z; ¢) acting as the noise distribution, whereas the MDN is trained
by minimizing its KL divergence to p(y|z; §). The EBM and MDN are here visualized
after 5 (top row), 10, 15, 20 and 25 (bottom row) epochs of training.
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EBM MDN Proposal

EBM Samples

Figure S4: An illustrative 1D regression problem [20], demonstrating the effective-
ness of our proposed method to jointly train an EBM p(y|z; 6) and MDN proposal
q(y|z; ¢). Inthis example, the MDN has K = 1 component. We here also demonstrate
that we can draw approximate samples from the EBM using the method described in
Section 3.2.2.

proposal is unimodal and thus not a particularly close approximation of the

EBM.

F PyTorch Code - Network Architecture

class NoiseNet (nn.Module) :

def

def

__init_ (self, hidden_dim):
super () .__init_ ()

self.fcl _mean = nn.Linear (hidden_dim, hidden_dim)
self.fc2 mean = nn.Linear (hidden_ dim, 3*self.K)

self.fcl sigma = nn.Linear (hidden_dim, hidden_dim)
self.fc2_sigma = nn.Linear (hidden_dim, 3*self.K)

self.fcl_weight = nn.Linear (hidden_dim, hidden_ dim)
self.fc2 weight = nn.Linear (hidden_dim, self.K)

forward(self, x_feature):
means = F.relu(self.fcl mean(x_feature)
means = self.fc2 mean (means)

log_sigma2s = F.relu(self.fcl sigma(x_feature))
log_sigma2s = self.fc2_sigma(log_sigmaZ2s

weight logits = F.relu(self.fcl_weight (x_feature))
weight logits = self.fc2 weight (weight_ logits)

weights = torch.softmax(weight_logits, dim=1)

return means, log_sigmaZs, weights

class PredictorNet (nn.Module) :

def

I1-28

__init_ (self, input_dim, hidden_dim):
super () .__init_ ()

self.fcl y = nn.Linear (input_dim, 16)

(
self.fc2_y = nn.Linear (16, 32)
self.fc3_y = nn.Linear (32, 64)
self.fcd_y = nn.Linear (64, 128)

self.fcl _xy = nn.Linear (hidden_dim+128, hidden_dim)



self.fc2_xy = nn.Linear (hidden_dim, 1)

def forward(self, x feature, y):
batch_size, num_samples, _ = y.shape

x_feature = xffeatureAView(batchisize, 1, -1).expand (-1, num samples, -1)
x_feature = x_feature.reshape (batch_size*num samples, -1)

y = y.reshape (batch size*num_samples, -1)

y_feature = F.relu(self.fcl_y(y)
F.relu(self.fc2_y(y_ feature))

y_feature = F.relu(self.fc3_y(y_feature))
F (self

y_feature =

y_feature =
.relu(self.fc4 y(y feature))

xy_feature = torch.cat([x_feature, y_ feature], 1)

xy_feature = F.relu(self.fcl xy(xy feature)
score = self.fc2 xy(xy_ feature)
score = score.view(batch_size, num_samples)

return score

class FeatureNet (nn.Module) :
def  init_ (self):
super (). init ()

resnetl8 = models.resnetl8(pretrained=True)
self.resnetl8 = nn.Sequential (*list (resnetl8.children()) [:-2])

self.avg _pool = nn.AdaptiveAvgPool2d((1l, 1))
def forward(self, x):

x_feature = self.resnetl8(x)
x_feature = self.avg pool (x_feature)

x_feature = x_feature.squeeze (2) .squeeze (2)
return x_feature
class Net(nn.Module) :
def init (self):

super (Net, self). init_ ()

hidden dim = 512

self.feature_net = FeatureNet ()
self.noise_net NoiseNet (hidden_dim)
self.predictor_net = PredictorNet (3, hidden_dim)

def forward(self, x, y):
x_feature = self.feature_net (x)
return self.noiseinet(xifeature)

G PyTorch Code - Training Loop

for step, (xs, ys) in enumerate (train_loader) :
xs = xs.cuda () # 3,
ys = ys.cuda() #

x_features = network.feature net(xs) #

means, log_sigma2s, weights = network.noise_net (x_features.detach())

s has ape: (batch
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sigmas = torch.exp(log_sigma2s/2.0) # (shape: (batch size, 3K))

means = means.view(-1, 3, K) # (shape: (batch size, 3, K))

sigmas = sigmas.view(-1, 3, K) # (shape: (batch size, 3, K))

g_distr = torch.distributions.normal.Normal (loc=means, scale=sigmas)
g_ys_K = torch.exp(g_distr.log prob(ys.unsqueeze(2)).sum(l)) # (shape: (batch size, K)
g_ys = torch.sum(weights*q ys K, dim=1) # (shape: (batch size))

y_samples K = g distr.sample (sample_shape=torch.Size ([num_samples]))
# (shape: (num samples, batch size, 3, K))
inds = torch.multinomial (weights, num_samples=num_ samples,
replacement=True) .unsqueeze (2) .unsqueeze (2)
# (shape: (batch_size, num samples, 1, 1))
inds = inds.expand(-1, -1, 3, 1) # (shape: (batch size, num samples, 3, 1))
inds = torch.transpose(inds, 1, 0) # (shape: (num samples, batch size, 3, 1))
y_samples = y_samples_K.gather (3, inds).squeeze(3) # (shape: (num samples, batch size, 3))
y_samples = y samples.detach()
g_y samples K = torch.exp(q distr.log prob(y_samples.unsqueeze(3)).sum(2))
# (shape: (num samples, batch size, K))
g_y_samples = torch.sum(weights.unsqueeze (0)*q_y_samples_K, dim=2)
# (shape: (num samples, batch size))
y_samples = torch.transpose(y_samples, 1, 0) # (shape: (batch size, num samples, 3))
g_y_samples = torch.transpose(q_y_samples, 1, 0) # (shape: (batch size, num samples))

scores_gt = network.predictor_ net (x_features, ys.unsqueeze(l)) # (shape: (batch size, 1))
scores_gt = scores_gt.squeeze(l) # (shape: (batch size))

scores_samples = network.predictor_net (x_features, y_ samples)
# (shape: (batchisize, nur amples))

adaagddadaiaddzadadaadadzadidaaddsadzaiadadzadsdsidzaiadsasad

# compute loss:
(dazadadadadasdsddsdaaadadadddasdsddsdssdsdssdsdssdsdssdsdd
f_samples = scores_samples

p_N_samples = g_y samples.detach ()

f 0 = scores_gt

p_N_0 = g_ys.detach()

exp vals 0 = f O-torch.log(p_N_0)

exp_vals_samples = f_samples-torch.log(p_N_samples

exp vals = torch.cat([exp vals_0.unsqueeze(l), exp vals_samples], dim=1)
loss_ebm nce = -torch.mean(exp _vals 0 - torch.logsumexp (exp_vals, dim=1))

log_Z = torch.logsumexp (scores_samples.detach (
- torch.log(g_y_samples), dim=1) - math.log(num_samples)
loss_mdn_kl = torch.mean(log_Z)
loss = loss_ebm nce + loss_mdn_kl
optimizer.zero_grad()

loss.backward ()
optimizer.step ()
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Accurate 3D Object Detection using
Energy-Based Models

Abstract

Accurate 3D object detection (3DOD) is crucial for safe navigation of complex
environments by autonomous robots. Regressing accurate 3D bounding boxes
in cluttered environments based on sparse LiDAR data is however a highly
challenging problem. We address this task by exploring recent advances in
conditional energy-based models (EBMs) for probabilistic regression. While
methods employing EBMs for regression have demonstrated impressive per-
formance on 2D object detection in images, these techniques are not directly
applicable to 3D bounding boxes. In this work, we therefore design a differ-
entiable pooling operator for 3D bounding boxes, serving as the core module
of our EBM network. We further integrate this general approach into the state-
of-the-art 3D object detector SA-SSD. On the KITTI dataset, our proposed
approach consistently outperforms the SA-SSD baseline across all 3DOD met-
rics, demonstrating the potential of EBM-based regression for highly accurate
3DOD. Code is available at https://github.com/frequ856/ebms
3dod.

1 Introduction

3D object detection (3DOD) is a key perception task for self-driving vehicles
and other autonomous robots. 3DOD entails detecting various objects from
sensor data, and estimating their size and position in the 3D world. Specifi-
cally, the goal of 3DOD is to place oriented 3D bounding boxes which tightly
contain all surrounding objects of interest. See Figure 1 for an example. These
3D bounding boxes then serve as input to important high-level tasks such as
planning and collision avoidance. Accurate 3DOD is thus crucial for safe au-
tonomous navigation of different complex environments.

In the automotive domain, 3DOD is usually performed from LiDAR point
clouds [1, 2, 3], images captured by vehicle-mounted cameras [4, 5, 6], or
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7

Z
777

Figure 1: We study how energy-based models (EBMs) can be applied to accurately
regress 3D bounding boxes in 3DOD from LiDAR point clouds. Here, we visualize
the output of our detector on a validation example from the KITTI [18] dataset.

;
g

from a combination of both data modalities [7, 8, 9]. Radar sensors are some-
times also utilized [10, 11, 12]. State-of-the-art 3D object detectors employ
deep neural networks (DNNss) to learn powerful feature representations directly
from this data [3, 13, 14]. The 3DOD task is then commonly divided into two
sub-tasks, in which anchor or proposal 3D bounding boxes are classified as ei-
ther background or a specific class of object, and then regressed toward ground
truth boxes [15, 16, 17].

In general, regression entails predicting a continuous target y from an input z.
This is a fundamental machine learning problem that can be addressed using a
variety of different techniques [20, 21, 22, 23, 24]. Specifically in 3DOD, the
3D bounding box regression problem is usually addressed by letting a DNN
directly predict a target bounding box y for a given input x, and training the
DNN by minimizing the L? or Huber loss [25, 15, 1, 3, 19]. Alternatively,
a probabilistic regression approach has also been employed. The conditional
target density p(y|x), i.e. the distribution for the target 3D bounding box y
given the input z, is then explicitly modelled using a DNN, which is trained by
minimizing the associated negative log-likelihood. Previous work on 3DOD
has mainly explored Gaussian models of p(y|x) [26, 27, 28, 29].

A Gaussian model is however fairly restrictive, limiting p(y|z) to unimodal and
symmetric distributions. Instead, recent work [30, 31, 32] has demonstrated
that improved regression accuracy can be obtained on various tasks by em-
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Figure 2: An overview of our proposed approach, applying EBM-based regression
to the task of 3D object detection. We integrate a conditional EBM p(y|z;6) =
efol@y) | [ efo(@.9)d into the state-of-the-art 3D object detector SA-SSD [19]. We
achieve this by designing a differentiable pooling operator that, given a 3D bounding
box y, extracts a feature vector from the SA-SSD output. This feature vector is then
processed by three fully-connected layers, outputting the scalar energy fy(z,y) € R.

ploying energy-based models (EBMs) [33] to represent the conditional target
density p(y|z). Specifically, this approach entails modeling p(y|x) with the
conditional EBM p(y|z;0) = efo(@¥)/ [ efo@9)dy, and then using gradient
ascent to maximize p(y|z; 0) w.r.t. y at test-time. Since the EBM p(y|z; 0) is di-
rectly specified via the scalar function fy(x, y), which is defined using a DNN,
it is a highly expressive model that puts minimal restricting assumptions on
p(y|z). Even potential multi-modality in the distribution p(y|x) can therefore
be learned directly from data. This EBM-based regression approach is thus an
attractive alternative also for 3D bounding box regression, especially consid-
ering the impressive performance demonstrated on conventional 2D bounding
box regression in images [30, 31, 32].

Extending the approach from 2D to 3D is however challenging. In particular,
using gradient ascent to maximize the EBM p(y|x; #) at test-time requires the
scalar DNN output fp(x,y) to be differentiable w.r.t. the bounding box y. For
2D bounding boxes in images, this was achieved by applying a differentiable
pooling operator [34] on image features [30, 31, 32], but this technique is not
directly applicable to 3D bounding boxes. How EBM-based regression should
be applied to 3DOD is thus currently an open question, which we set out to
investigate in this work.

Contributions We apply conditional EBMs p(y|x; 6) to the task of 3D bound-
ing box regression, extending the recent EBM-based regression approach [30,
31, 32] from 2D to 3D object detection. This is achieved by adding an extra net-
work branch to the state-of-the-art 3D object detector SA-SSD [19], and design-
ing a differentiable pooling operator for 3D bounding boxes y. We evaluate
our proposed detector on the KITTI [18] dataset and consistently outperform
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the SA-SSD baseline detector across all 3DOD metrics. Our work thus demon-
strates the potential of EBM-based regression for highly accurate 3DOD.

2 Energy-Based Models for Regression

EBMs were extensively studied by the machine learning community in the past
[33, 35,36, 37, 38, 39]. In recent years they have also had a resurgence within
the field of computer vision, frequently being employed for generative image
modeling [40, 41, 42, 43, 44, 45, 46, 47]. In comparison, the application of
EBMs to regression problems has not been a particularly well-studied topic.
Very recent work [30, 31, 32] has however demonstrated their efficacy on di-
verse computer vision regression tasks such as visual object tracking, head-
pose estimation and age estimation.

In regression, the task is to learn to predict targets y* € ) from inputs z* € X,
given a training set D of i.i.d. input-target pairs, D = { (2, vi)} Y, (2, 9:) ~
p(z,y). The input space X’ depends on the specific problem, but can e.g. corre-
spond to the space of images or point clouds. The target space ) is continuous,
Y = R¥E for some K > 1.

In EBM-based regression [30, 31, 32], this task is addressed by modelling the
distribution p(y|z) of y given x with a conditional EBM p(y|xz;#), defined
according to,

Z(x,0) = /efe(%ﬂ)dg. (1)

Here, fy : X x YV — R is a DNN that maps any input-target pair (x,y) €
X x Y directly to a scalar fyp(x,y) € R, and Z(z, ) is the input-dependent
normalizing partition function. The DNN output fy(z,y) is interpreted as the
(negative) energy of the distribution p(y|xz; 0).

2.1 Prediction

At test-time, EBM-based regression entails predicting the most likely tar-
get under the model given an input z*, i.e. y* = argmax, p(y|z*;0) =
argmax, fo(z*,y). In practice, y* = argmax, fp(z*,y) is approximated by
refining an initial estimate ¢ via 1" steps of gradient ascent,

y <y + AVyfo(z*,y), ()

thus finding a local maximum of fy(z*, y). Evaluation of the partition function
Z(z*,0) is therefore not required.
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2.2 Training

The DNN fy(z, y) that specifies the conditional EBM (1) can be trained using
various methods for fitting a density p(y|z; ) to observed data {(z;,y;)}Y,
Generally, the most straightforward such method is probably to minimize the
negative log-likelihood L£(0) = — Zf\i 1 log p(y;|z; 6), which for the EBM
p(ylz; 0) is given by,

Zlog (/ ’y)dy) — fo(xi, yi). (3)

The integral in (3) is however intractable, preventing exact evaluation of £(6).
One possible solution to this problem is to approximate the intractable integral
using importance sampling, as employed in [30]. However, numerous alterna-
tive approaches also exist, including noise contrastive estimation (NCE) [48]
and score matching [49]. The problem of how EBMs should be trained specifi-
cally for regression was studied in detail in [32], comparing six methods on the
task of 2D bounding box regression in images. From this comparison, [32] con-
cluded that a simple extension of NCE should be considered the go-to training
method.

NCE entails learning to discriminate between observed data examples and sam-
ples drawn from a noise distribution. NCE was adopted for EBM-based regres-
sion only recently in [32], but has often been used to train EBMs for classifi-
cation tasks in the past [50, 51, 52, 53]. Recently, it has also become highly
utilized within self-supervised representation learning [54, 55, 56, 57]. Apply-
ing NCE to regression means training the DNN fy(z,y) by minimizing the

loss,
N
1
- Z Ji(0)
=1
(0) “4)
exp{ fo(ws, y”) ~log (" |ys)
5i(0) =log— P! b
> exp{ fo(ai,,™) —loga(y,™ 1)}
where y( )& = y;, and {yl }M , are M samples drawn from a noise distribu-

tion ¢(y|y;) that depends on the true target y;. Effectively, J(6) in (4) is the
softmax cross-entropy loss for a classification problem with M + 1 classes.
A simple choice for ¢(y|y;) that was shown effective in [32] is setting ¢ to a
mixture of K Gaussians centered at y;,

1 K
a(ylyi) = 5 > Ny yi, ord), )
k=1

where K and the variances {a,%}ﬁil are hyperparameters.
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A simple extension to NCE, termed NCE+, was proposed and demonstrated to
further improve the regression accuracy on certain tasks in [32]. The DNN fy is
still trained by minimizing J(6) in (4), but yz(o) is now defined as yl(o) £ yi+ui.
The true target y; is thus perturbed with v; ~ gg(y), where gg is a zero-centered
and scaled version of g(y|y;) in (5), i.e. gs(y) = % S N(y;0,8020).
NCE+ accounts for possible inaccuracies in the annotation process producing
yi, and can be understood as a direct generalization of NCE. In fact, NCE is
recovered as a special case when § — 0 in gg(y).

3 Method

We apply EBM-based regression to 3DOD by extending the state-of-the-art 3D
object detector SA-SSD [19] with a conditional EBM p(y|xz; #) (1). In Sec. 3.1,
we first provide necessary background on SA-SSD, including a description
of its input and output data format. We then detail how the EBM p(y|z; 6)
is defined, employing differentiable pooling of 3D bounding boxes y and an
added network branch, in Sec. 3.2. Our approach for training p(y|x; 6) is based
on NCE and further described in Sec. 3.3. Lastly, our prediction strategy using
gradient ascent is detailed in Sec. 3.4.

3.1 The SA-SSD 3D Object Detector

SA-SSD [19] takes a LiIDAR point cloud of the scene as input x and produces
a set {d;}2, of D detections. Each detection d consists of a predicted 3D
bounding box y,

y=[cx ¢, ¢ h w I ¢]TeR, (6)

and an associated classification confidence score s € (0, 1). In (6), (¢cz, ¢y, ¢2)
is the 3D coordinate of the bounding box center, (h,w, ) is the 3D bounding
box size, and ¢ is the heading angle of the bounding box.

The input LiDAR point cloud z = {(pgf) , pg) , p,(zz)) »_, of n points is encoded
into a sparse 3D tensor by means of voxelization. This tensor is then processed
by a backbone network utilizing submanifold sparse 3D convolutional layers
[58, 59], producing a 3D feature tensor hj(x) of shape W x L x H x C. A
bird’s eye view (BEV) feature representation of the scene is then created by
flattening h1 () into the 2D feature map ha(x) of shape W x L x HC' Then,
ha(x) is further processed by six standard 2D convolutional layers, outputting
the feature map hg(z) of shape W x L x C’. Finally, hs(z) is fed to a detec-
tion network, in which two 1 x 1 convolutions are applied. The first outputs
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classification confidence scores and the second outputs offsets fora W x L
grid of anchor 3D bounding boxes.

The SA-SSD backbone and detection networks are trained by minimizing a
weighted sum of multiple losses. The focal loss [60] is employed for the clas-
sification sub-task, and the Huber loss [25] is used for the regression of an-
chor bounding box offsets. Additionally, SA-SSD employs two losses stem-
ming from auxiliary tasks. By inverting the voxelization via interpolation, 3D
feature tensors in the backbone network are represented as point-wise feature
vectors. These are then utilized for point-wise foreground segmentation, i.e.
predicting whether or not a point lies within any ground truth 3D bounding
box, and point-wise center offset regression, i.e. predicting the offset from a
foreground point to the center of its 3D bounding box.

3.2 Conditional EBM Definition

In this work, we extend the SA-SSD 3D object detector with a conditional
EBM p(y|z;0) = efo@¥) / [ efo(®:9)dg, which is fully specified by the DNN
fo- To enable the use of gradient ascent at test time (Sec. 2.1), the DNN must
be designed such that its scalar output fy(z,y) is differentiable w.r.t. the 3D
bounding box y (6). To achieve this, we take inspiration from the recent work
[30, 31, 32] applying EBM-based regression to 2D bounding box regression in
images. Thus, we design a differentiable pooling operator that, for a given 3D
bounding box y, extracts a feature vector from the SA-SSD backbone network
output. This feature vector is then processed by an added network branch of
fully-connected layers, outputting the energy value fy(x,y) € R.

Differentiable Pooling of 3D Bounding Boxes Various pooling operators for
3D bounding boxes y (6) have been utilized for refining proposal bounding
boxes in previous work [17, 2, 1, 3], none of which are however differen-
tiable Wrt the bounding box y. [17] extracts all points in the point cloud
T = {(pm , py , p,(;)) *_, which lie within a given box y, and then processes
the associated p01nt—W1se features to extract a feature vector for y. This opera-
tor is however not differentiable w.r.t. y, due to the required discrete assessment
of whether a point (pg) , pg) , pg)) lies within the 3D bounding box y or not. [2]
instead divides the box y into a 3D grid and extracts all points which lie within
each grid cell. By also encoding which grid cells are empty, this pooling oper-
ator better captures geometric information. Because of the discrete extraction
of points for each grid cell, it is however still not differentiable w.r.t. the 3D
bounding box y. For similar reasons, the pooling operators utilized in [1, 3],
which capture even richer contextual information, are not differentiable w.r.t.

y either.
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Figure 3: Illustration of our modified variant of RolAlign [61] for oriented 2D bound-
ing boxes. In this example, the regular W’ x L’ grid is 2 x 3. Bilinear interpolation is
used to extract a feature vector for each of the W’ L' grid points.

Instead, we utilize the 2D feature map hg(x) of shape W x L x C’ that is
produced by the SA-SSD backbone network. This is a compact yet powerful
BEV feature representation of the scene. Specifically, we extract a feature
vector hy(x,yBEY) by pooling hs(x) with yBEY,

PV =[cp ¢, w | ¢]T €R, (7)

which is the BEV version of the 3D bounding box y (6). Since yBEV is an
oriented 2D bounding box and not necessarily axis-aligned, we can not directly
apply standard 2D bounding box pooling operators [62, 61, 34]. Instead we
employ a modified variant of RolAlign [61], which entails dividing 3V into
a regular W’ x L’ grid, and extracting a feature vector ¢ € R” in each grid
point via bilinear interpolation of h3(z). See Figure 3 for an illustration. This
operation results in a 2D feature map of shape W’ x L’ x C’, which we then
flatten to obtain the feature vector hy(z,yB"Y) € RW'F'C". By flattening the
feature map instead of e.g. averaging over it, more information is preserved in
ha(x,yBEY). Tt can thus be used to discriminate between a given box and the
same box rotated 7 rad.

This pooling operation is differentiable w.r.t. y/BEY, but the extracted feature
vector hy(x,yBEY) € RW'E'C is of course only a function of BV (7), not
of the full 3D bounding box y (6). Using gradient ascent at test-time would
thus not update the z coordinate ¢, or height h of the bounding box y. To
resolve this, we take inspiration from the architecture used for EBM-based
age estimation [30]. We thus process ¢, € R and h € R by two small fully-
connected layers, generating feature vectors g.. € R¢” and g, € R®". Finally,
we concatenate the three vectors to obtain hs(x,y),

h5($,y) — h4(x, yBEV) D ge. @ gn € RW/L/C/+QC//, (8)
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Figure 4: Detailed illustration of the proposed differentiable pooling operation from
3D bounding box y (6) to feature vector hs(x, y) (8). The BEV version of y is pooled
with the BEV feature map produced by SA-SSD. The z coordinate ¢, and height h of
the box y are processed by two fully-connected layers.

where @ indicates vector concatenation. The complete pooling operation from
3D bounding box y to feature vector hs(z,y) is illustrated in Figure 4.

Energy Prediction Branch Following [30, 31, 32], we add an extra network
branch onto SA-SSD for processing the extracted feature vector. The network
branch consists of three fully-connected layers. It takes the feature vector
hs(z,y) € RV E'C+2C" a5 input and outputs the scalar energy f5(z,y) € R,
thus fully specifying the conditional EBM p(y|x; ) (1). The complete archi-
tecture of p(y|z; ) is illustrated in Figure 2.

3.3 Detector Training

Following the work on EBM-based 2D object detection [30, 32], the extra
fully-connected layers described in Sec 3.2 are added onto a pre-trained and
fixed SA-SSD detector. The parameters 6 in fy(z,y) thus only stem from
these added fully-connected layers, and the SA-SSD backbone and detection
networks are kept fixed during training of the DNN fy. To train fy, we use
NCE as described in Sec 2.2. We employ the same training parameters (batch
size, data augmentation etc.) as for SA-SSD [19], only replacing the original
detector loss with the NCE loss (4).

3.4 Detector Inference

At test-time, the input LIDAR point cloud x* is first processed by the SA-SSD
detector. SA-SSD outputs the 2D feature map hs(z*) and a set {(9;,s;)} 2,
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Algorithm 1 Gradient-based refinement.
Input: z*, {§;}2, T, \, .
1: fori=1,...,D do

2: Y — Y.

3: fort=1,...,T do

4: PrevValue « fyp(z*,y).

5: Uy + AVyfo(z*,v).

6: NewValue < fp(z*, 7).

7: if NewValue > PrevValue then
8: Y 9.

9: else

10: AN

11: Yi < Y.

12: Return {y;}2,.

of D detections, where ¢; is a 3D bounding box (6) and s; is the associated
classification confidence score. We then take all bounding boxes {f;}2 ;| as
initial estimates and refine these via 1" steps of gradient ascent (Sec 2.1), pro-
ducing {y;}2,. The initial 3D bounding boxes {#;}2, are thus refined by
being moved toward different local maxima of fy(x*,y). The refined boxes
{yi} f;l are finally combined with the original confidence scores, returning the
detections { (v, si)} 2.

This gradient-based refinement of the detections produced by SA-SSD of
course lowers the detector inference speed somewhat. The point cloud z*
is however still processed by SA-SSD only once, and the scalar fy(z*,y) is
extracted from hg(z*) using an efficient pooling operator and just a few fully-
connected layers. Moreover, the gradient V,, fo(2*, y) can be efficiently eval-
uated using automatic differentiation. The complete refinement procedure is
detailed in Algorithm 1, where A denotes the gradient ascent step-length, 7 is
a decay of the step-length, and the NewValue > PrevValue check ensures
that fy(z*,y) is never decreased.

4 Experiments

We evaluate our EBM-based 3DOD approach on the KITTI 3DOD dataset
[18] and compare it with the SA-SSD [19] baseline and other state-of-the-art
methods. Our detector is implemented in PyTorch [63]. Training and inference
code is publicly available.
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4.1 Dataset

KITTI [18] is the most commonly used dataset for automotive 3DOD. It con-
tains 7481 examples for training, and 7 518 fest examples without publicly
available ground truth annotations. Following common practice [19, 3], the
training examples are further divided into train (3 712 examples) and va/ (3 769
examples) splits. We train models exclusively on the train split and set hyper-
parameters using the va/ split. We report results both on va/, and on the fest
split by submitting detections to the KITTI benchmark server. Following SA-
SSD, we conduct experiments only on the car object class.

Evaluation Metrics On the KITTI benchmark server, models are evaluated
in terms of average precision (AP) in both 3D and BEV. It considers three
different difficulty levels (easy, moderate and hard), based on how far away and
occluded objects are. AP is the area under the precision-recall curve, where a
predicted bounding box is considered a true positive if its 3D/BEV IoU with
a ground truth box exceeds a certain threshold. For cars, the threshold is set
to 0.7 on the KITTI benchmark. Two predicted boxes with IoU of, e.g., 0.71
and 0.99 thus have identical effect on this metric. Since our main goal is to
improve the accuracy of all predicted bounding boxes, we also report the AP
for higher thresholds {0.75,0.8,0.85,0.9} on the val split. All reported AP
values are computed using 40 recall positions.

4.2 Implementation Details

We utilize the open-source implementation and pre-trained model provided! by
the SA-SSD authors. The feature map h3 () that is produced by the backbone
network is of shape 200 x 176 x 256. We divide each yBEY (7) into a regular
4 x 7 grid, meaning that the feature vector hy(x,yBFY) € R7168. We process
¢, € Rand h € R with separate fully-connected layers (dimensions: 1 — 16,
16 — 16), generating g.. € R16 and g, € RS, After concatenation, we
thus obtain hs(x,y) € R™%. Finally, hs(z,y) is processed by three fully-
connected layers of dimensions 7200 — 1024, 1024 — 1024, 1024 — 1. To
train the DNN fy(x,y), i.e. the added fully-connected layers, we just replace
the original detector loss with the NCE loss (Sec. 3.3). We also considered
NCE+ with 8 > 0, but saw no clear improvements over NCE. We hypothesize
this is because there is less inherent ambiguity in the annotation process of
3D bounding boxes than of 2D bounding boxes in images. As in [32], we set
K = 3 with 01 = 03/4, 09 = 03/2 for the noise distribution q(y|y;) (5).
After ablation, optimizing 3D AP (moderate difficulty) on the val split, we
set o3 differently for different components of the 3D box y (6). Specifically,
o3 = 0.25 for (cz,¢y), 03 = 0.125 for (c;, h,w,l) and o3 = 0.0625 for

"https://github.com/skyhehel23/SA-SSD
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Table 1: Results on KITTI fest in terms of 3D and BEV AP. Our SA-SSD+EBM de-
tector consistently outperforms the SA-SSD baseline, and achieves highly competitive
performance also compared to other state-of-the-art methods.

3D@0.7 BEV @ 0.7

Easy Moderate Hard | Easy Moderate Hard
Part-A? [2] 87.81 7849  73.51 | 91.70 87.79 84.61
SERCNN [64] 87.74 7896  74.30 | 94.11 88.10 83.43
EPNet [65] 89.81 7928 74.59 | 94.22 88.47 83.69
Point-GNN [66] 88.33  79.47 7229 | 93.11 89.17 83.90
3DSSD [67] 8836  79.57 74.55 | 92.66 89.02 85.86
STD [1] 8795 79.71 75.09 | 94.74 89.19 86.42
SA-SSD [19] 88.75 79.79  74.16 | 95.03 91.03 85.96
3D-CVF [14] 89.20 80.05 73.11 | 93.52 89.56 82.45
CLOCs-PVCas [13]| 88.94 80.67 77.15 | 93.05 89.80 86.57
PV-RCNN [3] 90.25 8143 76.82 | 94.98 90.65 86.14
SA-SSD 88.80 79.52 7230 | 95.44 89.63 84.34
SA-SSD+EBM 91.05 80.12 72.78 | 95.64 89.86 84.56
Rel. Improvement |+2.53% +0.75% +0.66%|+0.21% +0.26% +0.26%

¢. Following [30, 32], we also set 7' = 10 and n = 0.5 for gradient-based
refinement (Algorithm 1). The step-length A = 0.0002 was selected based on
ablation.

4.3 3DOD Results on KITTI

Results on KITTI test in terms of 3D and BEV AP (0.7 threshold) are found
in Table 1. We mainly compare the performance of our EBM-based 3D object
detector (SA-SSD+EBM) to the pre-trained SA-SSD it extends, and include
other state-of-the-art detectors for reference. We also include the results for SA-
SSD reported in the original paper [19], as these differ somewhat from those
obtained with the provided pre-trained model. In Table 1, we observe that the
added EBM and gradient-based refinement consistently improves the SA-SSD
baseline across all metrics. We also observe that our SA-SSD+EBM detector
achieves very competitive performance compared to previous methods.

Results on KITTI va/ in terms of 3D and BEV AP (0.7 threshold) are found in
Table 2. There, we only include detectors for which AP values computed using
40 recall positions are available. In Table 2, we again observe that our EBM-
based detector consistently outperforms the SA-SSD baseline. On KITTI val,
our SA-SSD+EBM also sets a new state-of-the-art in terms of all but one of
the metrics.

A further comparison of SA-SSD+EBM and the SA-SSD baseline is provided
in Table 3. There, we report AP for higher thresholds {0.75,0.8,0.85,0.9}
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Table 2: Results on KITTI val in terms of 3D and BEV AP. Our proposed detector
consistently outperforms the SA-SSD baseline, and sets a new state-of-the-art for all
but one of the metrics.

3ID@ 0.7 BEV @ 0.7

Easy Moderate Hard | Easy Moderate Hard
SA-SSD [19] 9323 8430 81.36 - - -
CLOCs-PVCas [13]| 92.78 85.94 83.25 | 93.48 91.98 89.48
PV-RCNN [3] 92.57 84.83  82.69 | 95.76 91.11 88.93
SA-SSD 93.14 84.65 81.86 | 96.56 92.84 90.36
SA-SSD+EBM 9545 86.83 82.23 | 96.60 92.92 90.43
Rel. Improvement |+2.48% +2.58% +0.45%|+0.04% +0.09% +0.08%

Table 3: Results on KITTI val in terms of 3D and BEV AP for higher thresholds
{0.75,0.8,0.85,0.9}. Our SA-SSD+EBM detector consistently outperforms the SA-

SSD baseline across all metrics, and the relative improvement increases with the AP
threshold.

3D @ 0.75 3D @0.8 3D @ 0.85 3D @ 0.9
Easy Moderate Hard | Easy Moderate Hard | Easy Moderate Hard | Easy Moderate Hard
SA-SSD 84.48 73.91 70.99 | 60.89 50.08 47.37 | 24.29 19.58 18.05 | 2.06 1.58 1.33

SA-SSD+EBM 87.85 74.96 71.95 | 66.70 54.32 51.36 | 31.02 2391 2195 | 345 2.74 2.26
Rel. Improvement |+3.99%  +1.42%  +1.35%|+9.54% +8.47% +8.42% |+27.7% +22.1% +21.6%|+67.5% +73.4% +69.9%

BEV @ 0.75 BEV @ 0.8 BEV @ 0.85 BEV @ 0.9
Easy Moderate Hard | Easy Moderate Hard | Easy Moderate Hard | Easy Moderate Hard

SA-SSD 95.41 87.47 84.79 | 87.12 79.07 74.65 | 61.53 54.15 50.39 | 17.48 15.71 14.58

SA-SSD+EBM 95.47 87.54 84.88 | 88.31 80.06 77.25 | 68.40 58.62 54.48 | 26.60 22.03 19.48
Rel. Improvement|+0.06%  +0.08%  +0.11%|+1.37% +1.25% +3.48% |+11.2% +8.25% +8.12%|+52.2% +40.2% +33.6%

on KITTI val. We observe that the gradient-based refinement consistently im-
proves detector performance across all metrics, and that the relative gain is
larger for higher thresholds. Our approach thus also refines accurate bounding
boxes even further, an effect not captured by the standard AP metrics.

4.4 Analysis of Inference Speed

The improved detection performance compared to SA-SSD comes with a de-
creased inference speed. On a single NVIDIA TITAN Xp GPU, SA-SSD runs
at 19.2 FPS, while SA-SSD+EBM runs at 8.4 FPS for 7' = 10 gradient ascent
iterations. We further analyze how the choice of T" affects detector inference
speed and performance in Figure 5. The performance is here given in terms of
3D AP (0.7 threshold) averaged over the three difficulty levels (easy, moderate,
hard), on KITTI val. We observe that the choice 7' = 4 provides approximately
equal performance compared to 7' = 10, while only decreasing the inference
speed to 12.8 FPS. This trade-off between detector performance and inference
speed could potentially be further improved by using fewer grid points in our
RolAlign variant, or by using a more lightweight energy prediction network
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Figure 5: Impact of the number of gradient ascent iterations 7" in Algorithm 1 on
detector performance (3D AP with 0.7 threshold, averaged over easy, moderate and
hard) and detector inference speed (FPS), on KITTI val. Refinement with 7' = 4
iterations significantly improves the detector performance, while only decreasing the
inference speed from 19.2 to 12.8 FPS.

branch. Our approach could also be very well-suited for offboard 3DOD [68],
where inference speed is less of a concern. Exploring these directions is left
for future work.

4.5 Analysis of Learned Distribution

For 3DOD from LiDAR point clouds, it can be inherently difficult to correctly
predict the heading angle ¢ of a 3D bounding box y (6). This is because it
is often difficult, when only given a point cloud, to distinguish between two
otherwise identical cars which are heading in opposite directions. The true
distribution p(y|x) will thus often have two distinct modes, one at the true
heading angle ¢ and one at ¢ + 7. In Figure 6, we visualize fy(x,y) € R
as a function of A¢ when a predicted 3D bounding box ¥ is rotated A¢ rad,
demonstrating that our trained EBM p(y|x; ) does indeed capture this inherent
multi-modality in the true p(y|z). Future directions include investigating if
the trained EBM p(y|z;6) could be used to construct accurate estimates of
prediction uncertainty, or provide other useful insights.

5 Conclusion

We applied conditional EBMs p(y|x; 0) to the task of 3D bounding box regres-
sion, thus extending the recent EBM-based regression approach from 2D to
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Figure 6: Visualization of the DNN scalar output fy(x, y) when a predicted 3D bound-
ing box y (6) is rotated A¢ rad. The two distinct modes at A¢p = 0 and A¢p = 7
demonstrate that the trained EBM p(y|x; 0) captures the inherent multi-modality in

p(y|@).

3D object detection. By designing a differentiable pooling operator for 3D
bounding boxes, we could integrate a conditional EBM p(y|x; #) into the state-
of-the-art 3D object detector SA-SSD. On the KITTI dataset, our approach
consistently outperformed the SA-SSD baseline across all 3DOD metrics, and
achieved highly competitive performance also compared to other state-of-the-
art methods. By demonstrating the potential of EBM-based regression for
highly accurate 3DOD, we hope that our work will encourage the research
community to further explore the application of EBMs to 3DOD and other
important regression tasks.
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Deep Energy-Based NARX Models

Abstract

This paper is directed towards the problem of learning nonlinear ARX models
based on observed input—output data. In particular, our interest is in learning a
conditional distribution of the current output based on a finite window of past
inputs and outputs. To achieve this, we consider the use of so-called energy-
based models, which have been developed in allied fields for learning unknown
distributions based on data. This energy-based model relies on a general func-
tion to describe the distribution, and here we consider a deep neural network
for this purpose. The primary benefit of this approach is that it is capable of
learning both simple and highly complex noise models, which we demonstrate
on simulated and experimental data.

1 Introduction

This paper considers the problem of learning a model for dynamic systems
based on observed input—output data. This problem has a long and fruitful
history within the system identification, statistics and machine learning com-
munities and there are many different ways to approach it. For example, a
regularly employed approach is to first define a suitable parameterized model
structure based on knowledge of the system. Then we learn, adapt, infer or
estimate the parameters based on the available evidence in the data. To decide
between different parameters, and ultimately provide the best values, the user
is required to choose a performance criterion such as the maximum-likelihood
(ML) or prediction-error criteria.

It is important to note that both the model structure and estimation method in-
volve assumptions about uncertainty, be they explicit or implicit. That is, the
probability distribution that represents this uncertainty is assumed. For exam-
ple, it is not uncommon that users explicitly assume additive white Gaussian
noise as a way of modelling measured output uncertainty. Further, it can be
argued that this same assumption is implicit in mean-squared-error estimation.
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More generally, in many practical situations, it is difficult to simply justify
these assumptions from the available prior system knowledge or even from
the data.

This paper details a means for addressing this difficulty by allowing the dis-
tribution itself to be modelled using a highly flexible function that is learned
from the available data. The primary benefit of this approach is that it can eas-
ily adapt to both highly complex distributions and also less complicated ones
such as a unimodal Gaussian. The inspiration for this approach comes from the
allied field of machine learning where so-called energy-based models (EBMs),
typically combined with deep neural networks (DNNs), are employed for mod-
elling unknown distributions with great success [1, 2, 3].

To make these ideas concrete, this paper will concentrate on the class of
nonlinear-autoregressive-exogenous-input (NARX) dynamic models [4]. In
particular, it will be assumed that the current system output ¥, is related to
past outputs y¢—1,...,¥y:—p,, and past inputs u;_1,...,us—p,; where Dy is
the maximum output delay and D,, is the maximum input delay. Our particu-
lar interest here is in providing a conditional distribution of y; given the past
data window. That is, we are concerned with describing

Yelze ~ p(yel @), (1)

where x; contains the past data window:

Ty = {yt_h <o Yt—D,s Ut—1, - - - ,Ut—D“}- ()

Unfortunately, it is not immediately obvious how to choose this distribution
so that it explains measured system data. One way to address this difficulty is
to assume a functional form for this distribution that relies on some unknown
parameters 6, which we denote as py(y;|x;). The idea then is to estimate these
parameter values based on the available evidence in the data. This raises at
least two questions; how should we parameterise this distribution, and, how
should we learn from the data?

Regarding the first problem of parameterisation, a traditional approach for
NARX models is to first formulate an output equation form

Yt = fo(ze) + e, 3)

where fy is a function that is traditionally linear in the parameters 6, but is
otherwise quite a general function of the past data ;. The added term e, is a
random variable that characterises the error between the function output fp(x)
and the measured output y;, and, its distribution may also depend on 6. There-
fore, by construction, the conditional distribution of interest, py(y¢|x:), will
depend on the assumed choice of distribution for e;.

Regarding the second problem of learning from the data, again a traditional
approach is to formulate and solve the associated ML problem [4]. By way of
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a concrete example, assuming that y; € R and the noise e; is i.i.d. Gaussian
with zero mean and variance o2, then the ML solution for 6 coincides with

T
6 = i - 2, 4
argﬂ},}n;Hyt Jo(ze)|| “4)

Therefore, an estimate of the desired conditional distribution p(y;|x;) is given
by

yt|$tNN(f§(fUt)702)- (%)

More complex distributions for e; can also be accommodated within the ML
framework, but this requires the user to choose a suitable distributional family.
In many practical situations, it is not obvious how to select this family based
on prior system knowledge.

This paper aims to address this difficulty by providing a highly flexible class
of distributions that is adapted to each new problem based on the available sys-
tem data. In particular, p(y;|x;) will be modelled with the conditional EBM
po(ye|we) = €9 W)/ [ 96(3:2) dy, where the scalar function gy is repre-
sented by a DNN with associated parameters 6. This energy-based approach
puts very few restricting assumptions on the true distribution p(y; |x ), enabling
it to be learned directly from data.

Contributions The main contribution of this paper is an energy-based model
capable of learning p(y;|z;) for dynamic systems. We evaluate the new con-
struction on both simulated and experimental data, demonstrating its benefits
compared to more traditional NARX models. This paper thus illustrates the
utility of EBMs and their potential within system identification.

2 Related Work

During the last decade, there has been a surge of interest in DNN models and
these models have been used to obtain state-of-the-art solutions for many ap-
plications, including computer vision, speech recognition and natural language
processing [5]. While the use of neural networks in system identification prob-
lems has a long history [6, 7], the success of the method in neighbouring areas
has brought a new wave of interest within the system identification commu-
nity [8], with recent papers leveraging acquired knowledge and being inspired
by successful ideas from recent DNN applications. Examples of deep-learning-
inspired ideas applied in system identification include; convolutional network
layers [9], encoder-decoder structure [10] and recurrent neural networks and
its extensions [10, 8].
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Feature net Predictor net

Lt — 0, ’_ 0, j\

a p(yt|z+)

Figure 1: Structure of the deep EB-NARX model used. Here, x; is the known input
data and y; is a possible output value that we wish to estimate the conditional proba-
bility of. During training, the measured y; will be used to train the predictor net.

EBMs have been extensively studied by the machine learning community [11,
12, 13]. They are usually employed for unsupervised learning applications,
and have in recent years become particularly popular for generative modelling
within computer vision [14, 1, 2]. In comparison, the application of EBMs to
supervised learning problems is not a very well-studied topic, but their effec-
tiveness has been demonstrated for both classification [15] and regression [3].
Most closely related to our proposed approach is the very recent work on em-
ploying conditional EBM’s for regression [3, 16, 17], achieving state-of-the-art
performance on tasks such as object detection and tracking.

3 Energy-Based NARX Models

Inspired by [3], we model the distribution p(y;|z;) with the conditional EBM

ede (yml’t)
Po(yt|xe) = ma (6)

where gy is a DNN that maps any pair (y;, z;) directly to a scalar output
9o(ye, xt) € R.

Here, pg(y:|z:) is directly specified via the DNN gy, which provides a highly
flexible class of functions. This enables py(y:|x:) to model a wide range of
distributions, including heavy-tailed, asymmetric or multimodal ones. Related
to this, we note that the DNN output value go(y¢, z;) € R is proportional to
the logarithm of the distribution py(y:|z:), not to the output g, itself. This
has implications for how the model may be used, which will be discussed in
Section 3.3 below.

Evaluating the denominator Z(z¢) = [ gg(y¢|z:) dy; in (6) presents a chal-
lenge since this integral is analytically intractable in general. For the case when
Yy is low-dimensional, the integral may be evaluated using standard quadrature
methods. In the more general case, we advocate the use of Monte Carlo meth-
ods for solving this integral (see [3] for details on this approach).
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Since the EBM (6) relies on a nonlinear combination of previous data z;, we
will refer to this as an energy-based NARX (EB-NARX) model. Next, we first
provide more details on the structure of the DNN gy in Section 3.1. We then
describe how to learn the unknown DNN parameters € based on a set of training
data D = {y, xt};‘rzl, in Section 3.2. Finally, we discuss how the model can
be used for prediction, in Section 3.3.

3.1 Neural Network Structure

The DNN gy is composed of two smaller neural networks; a feature net and
a predictor net parametrised by 6; and 6, respectively. The feature net takes
x¢ as input and produces a feature vector. This feature vector is then com-
bined with y; and fed as input to the predictor net, which finally outputs the
unnormalised log density gg(y:, x¢) € R of (6). See Figure 1 for an illustration.
This structure has the benefit that when making predictions the feature net only
needs to be evaluated once, after which the predictor net can be evaluated for
a range of y; values.

3.2 Training the Neural Network

Presented with the data D = {y;, 2 }/_, and the DNN gy (y:, x), it is tempting
to consider the ML problem as a means for learning the parameters 6. Towards
this, we can express the joint likelihood, under the assumption of independence,
as

po(y1.7|ur.r) = po(yr|yir—1, vi.T) Po(y1.r—1|u1.7), (7

where we have used conditional probability to arrive at the expression on the
right. Noting the assumed temporal and causal nature of the NARX model,
then repeated application of conditional probability delivers

T 96 (ye,+)
po(yrr | wir) = Epé(yt ED) H Srer ®)
Therefore, the ML estimate for 8 coincides with
6 = argmax py(yu.r | wrr), ©)
= arg min —Inpg(y1.7 | u1.7), (10)

_ argmlnz < 90 Y, Tt —I—ln/ege(%%) d’y) , (11)
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where the second equality relies on logarithm being a monotonic operator,
which implies that the solutions coincide. The third equality is simply the neg-
ative logarithm applied to (8). This ML problem is not immediately soluble,
due to the analytically intractable integral. Numerical integration can however
be employed to obtain an approximate solution, as shown in [3].

Alternative cost functions for fitting the parameters, 6, of the distribution
po(yt|z¢) given the observed data {y;, x4 }1_; exist. These alternatives were
studied in detail for conditional EBMs by [17], recommending noise con-
trastive estimation (NCE) [18] over ML. We thus employ NCE and learn 6
by minimizing the cost function L(6) = —= Zt 1 Li(0),

exp (ge(yfo) ,2)—Ing(y” Iyt))

Ly(0) =In — = ; (12)
> m—0 €XP (ge(yt ,z¢)—Ing(y," !yt))
where y( ) A yt, and {yt _, are M noise samples drawn from q(y|y:).
This noise distribution is a mlxture of K Gaussians centered at y;,
q(yly) = ZN (Ylye, ka) 13)

k: 1

Since (12) can be interpreted as the cross-entropy loss for a classification prob-

lem with M + 1 classes, NCE intuitively entails learning to discriminate be-

M

tween the output y; and sampled noise {yt 1"

3.3 Prediction using the Deep EBM

Rather than giving a point prediction, the proposed deep EB-NARX model
predicts gg(y:, 1) o Inpg(y¢|x¢). There are two ways in which this prediction
could be used: if the uncertainty of the prediction is important then we can
evaluate py(y:|z¢); alternatively, if we only require a point estimate then we
could choose the maximum a posterior (MAP) estimate.

The MAP estimate, g, can be found by solving
gt = argn;axpg(ytmt) = argn;axgg(yt,xt). (14)

Since there is no guarantee that py(y¢|x;) is unimodal, it was found practical
to evaluate gg(y, x¢) for a spread of values and then refine the best of these
using gradient ascent, y; < vy + AVy, 9o (yt, T4).

An estimate of pg(y¢|z:) can be determined by evaluating (6) for a range of
feasible values of y;, where the denominator can be determined by numerical
integration, such as Monte Carlo integration.
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4 Examples

This section provides several examples which illustrate the utility of the EB-
NARX model when applied to data from dynamic systems. These examples
include both simulated linear and non-linear data, as well as real data from the
CES coupled electric drives nonlinear data set [19]. For the linear examples,
qualitative comparisons are made between the estimated and true distributions.
For the non-linear examples, qualitative comparisons are made between a fully
connected network (FCN) and EB-NARX estimates of the conditional distri-
butions.

While simple, FCN’s obtain highly competitive results in nonlinear system
identification benchmarks, even when compared with more sophisticated ap-
proaches, such as convolutional and recurrent neural networks, see the bench-
marks in [9]. The FCN models are estimated in the functional form (3),
nonetheless the conversion to a probabilistic form (1) is straightforward: we
use the implicit assumption of Gaussian noise (which is made when minimiz-
ing the least square cost function), where the mean is the output of the model
and the variance is the sample variance.

Quantitative comparison between the EB-NARX model estimates and the true
values are given using the mean squared error (MSE) based on the MAP value
from the predicted conditional distribution. Python code for these examples is
available at: github.com/jnh277/ebm arx.

4.1 Pedagogical Example

First, the ability of the EB-NARX model to learn different distributions is il-
lustrated. To do this, the method is applied to data generated using a simple
autoregressive (AR) model with different distributions for the noise;

Yy = 0.95y:—1 + et (15)
Four different distributions for the noise e; are considered:

a) zero-mean Gaussian, e; ~ N(0,0.2%),

b) bimodal Gaussian, e; ~ 0.5NM(0.4,0.1%) + 0.5NM(—0.4,0.1?),
¢) zero-mean Cauchy, e; ~ C(0,0.22),

d) Gaussian with variance dependent on the systems state,

0,0.3%) if |y—1]<0.5

etN N( Y )2 1 ’ytl‘ < (16)
N(0,0.05%) otherwise.

The learned distributions are shown in Figure 2. While Gaussian noise is often

a fair assumption, the utility of a more flexible noise model is made appar-

ent by considering that measurement outliers can be modelled by Student’s T
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Figure 2: Pedagogical example of learning different distributions using a deep EB-
NARX model from data generated using a simple AR model (15).

or Cauchy distributions. Moreover, in Section 4.4 the real data gives rise to
distribution that is conditional on x; and in some cases bimodal.

4.2 Linear ARX

To further build confidence in the method’s ability to learn the distribution
po(yt|xt), it is demonstrated on data generated using a second-order linear au-
toregressive eXogenous (ARX) model;

Yy = 1.5y;—1 — 0.7y, 2 +ug—1 + 0.5u 2 + ey, (17)

where e; ~ 0.6N(0,0.12)+0.4N(0,0.3%). An EB-NARX model is trained on
1000 data points and then used to predict the distribution for 200 validation data
points. Figure 3a shows part of the predicted sequence along with the true mean
and 95% confidence interval (CI). Figure 3b shows the prediction pg(y:|x)
for t = 56 given by the EB-NARX model and an ML estimate given by least-
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Figure 3: (a) Estimates of py(y:|x+) for a validation data sequence. The blue shading
indicates the 65%, 95%, 99% confidence regions. (b) The EB-NARX and least-squares
estimates and true distribution for ¢ = 56.

squares', compared to the true Gaussian mixture distribution. This illustrates

that the EB-NARX model is able to accurately learn the mixture distribution
and provide significantly more accurate quantification of the uncertainty than
a standard ML approach.

4.3 Simulated Nonlinear Problem

So far, the method has been demonstrated on linear problems for which the
learned distributions could be easily compared to the true distributions. The
method is now applied to data simulated using the nonlinear model [20];

y = (0.8 _ 0.5e*y2‘31) yt L — (0.3 n 0.9e*y2‘31) T
+ u—1 + 0.2up—9 + 0. 1up_1us—o + vy, (18)
Yt :yik + wy,

where v; ~ N(0,02) and w; ~ N(0,02). Using D, = D, = 2, the per-
formance of the EB-NARX model is compared to that of an FCN for a range
of noise standard deviations and training sequence lengths in Table 1. These
results indicate that the EB-NARX model performs competitively with the
FCN for this data despite making no assumptions about the form of the dis-
tribution. An example of the predicted distributions for data generated using
0y = 0y = 0.3 and N = 1000 is shown in Figure 4. Since training the
FCN using a squared-error loss function implicitly assumes Gaussian noise, it
is, therefore, possible to determine the Gaussian distribution for the estimates

IThis ML estimate makes an implicit Gaussian assumption.
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Table 1: Simulated nonlinear MSE on the validation set for the FCN and EB-NARX
model trained on datasets generated with different noise levels (o, = o0, = 0)
and lengths (N). Only the best results are reported from among the different hyper-
parameters and architectures considered (see Appendix A for details).

N =100 N =250 N =500
FCN EB-NARX | FCN EB-NARX | FCN EB-NARX
c=20.11]0.122 0.099 | 0.069 0.070 | 0.057 0.054
=031 0.398 0.390 | 0.353 0.354 | 0.289 0.308
o =0.510.860 0.869 | 0.809 0.822 | 0.754 0.779
# Measurements e EB-NARX al
89 — EB-NARX MAP - 07 Fon .I;
o :: Téazna AN os = = Measurement :
4 EB'NA'/*XPsWrIXr’ /// \ : i
8 = £, ¥
> g i
N/ = E
N L8 a0.2 : :l.
—4 [
o1 P
1y
0.0  ——————————————— >4 1 \,_
~ : En 5 ; T
t Ys3
(a) Sequence (b)t=>53

Figure 4: Estimates of py(y;|x;) for a validation data set generated using the nonlin-
ear ARX model presented by [20]. The blue shading indicates the 65%, 95%, 99%
confidence regions.

and compare this to the distribution learned using the EB-NARX model. The
variance of the FCN distribution has been calculated as the sample variance.

4.4 Real Data: Coupled Electric Drives

We now demonstrate the practical utility of the presented method by applica-
tion to the CE8 coupled electric drives benchmark data set [19]. The coupled
electric drives system, illustrated in Figure 5, consists of two electric motors
that drive a pulley using a flexible belt. The pulley is held by a spring and its
angular speed is measured by a pulse counter, which is insensitive to the sign
of the angular velocity. This creates an ambiguity in the measurements. The
input to the system is the signal sent to both motors.

The first three data sets described in [19], which use a random binary input sig-
nal, were combined into one set, that was then randomly split 50/50 between
training and validation, giving 750 data points in each set. This data was used
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Figure 5: Illustration of the CE8 coupled electric drives system [19].

to train an FCN and an EB-NARX model, with the delays D,, = D, = 3 and
the selection of hyperparameters and structure detailed in Appendix A.

The best result for the FCN was an MSE of 0.0521, and for the EB-NARX
model an MSE of 0.0503. Figure 6 shows examples of estimates produced
using the FCN and EB-NARX models. As in Section 4.3, the sample vari-
ance has been used for the Gaussian distribution of the FCN prediction. This
variance is constant for all time steps, whereas the EB-NARX model predicts
distinctly different and even non-Gaussian distributions at some time steps.

This example demonstrates the flexibility of the EB-NARX model since the
magnitude of the angular velocity is measured rather than the angular velocity
itself. This produces a sign ambiguity, which has an impact when the velocity
crosses zero (there is a reflection in the speed). Intuitively, we expect the mea-
surement distribution to be multi-modal around these points and indeed this
intuition is supported by the estimates from the EB-NARX model. In contrast,
the sample variance for the FCN predictions does not capture the dependence
of the distribution on x; and therefore over-estimates the variance away from
zero and under-estimates it close to zero.

5 Conclusion & Discussion

The salient feature of the EB-NARX model is that it has a highly flexible
functional form, which is capable of adapting both to simple and more com-
plex distributions. By contrast, more traditional approaches typically assume
a noise distribution that is convenient for learning purposes. While the exam-
ples demonstrate that this flexibility is quite useful, it should be noted that the
comparisons presented in this work only considered a relatively limited num-
ber of data sets, model types, and model structures. As such, a more thorough
comparison should be undertaken as future work.
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Figure 6: Estimates of py(y:|x:) for a sequence of validation data from the CE8 cou-
pled electric drives benchmark data set [19]. The blue shading indicates the 65%, 95%,
99% confidence regions. The sample variance was used to determine the variance of
the FCN assumed Gaussian distribution.

Given that the EB-NARX model is learning the full conditional distribution
rather than the point estimate, it might be expected that the performance of the
point predictions would suffer when compared to the standard application of an
FCN. However, for the particular data sets studied in the nonlinear simulation
example, the results in Table 1 indicate that the EB-NARX model approach
gives competitive point estimates. Further, when applied to a real data set
from the CES8 coupled electric drives system, the EB-NARX model gave point
estimates with a lower MSE than the estimates from a standard FCN. This
suggests that the EB-NARX model may be a better choice when the conditional
distribution depends on the current state of the system.

In this work, the EB-NARX model was composed of two networks; a predic-
tor net and a feature net. This structure is suggested by [3] in the context of
regression tasks with high dimensional input spaces, such as images. Hence, it
may be less beneficial in the current setting where x; is typically of relatively
low dimension. The exploration of other structures that may be more suitable
in the system identification context is another avenue for future research.
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A limitation of the presented work is that it only considers one-step-ahead
predictions and not multi-step-ahead predictions or even free-run simulations.
Since the EB-NARX model predicts the full conditional distribution yet it takes
as inputs point data, it is not clear how these predictions could be propagated
forward in time. Whilst it would be possible to propagate the MAP estimate
this does remove the main benefit over the standard FCN approach and further
has questionable validity if the distribution is multimodal.

Finally, the presented work has only considered NARX systems and an inter-
esting area of future research would be to consider deep EBM’s for other types
of system identification problems.
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Appendix

A Hyper-Parameter and Structure Selection

For each data set, 500 FCN and EBM models were trained covering a range
of structures and hyper-parameters. For the FCN, the number of layers ranged
from 2 to 4. The dimension of each layer was varied from 50 to 300, and both
tanh and ReLU activation functions were considered. For the EBM, the fea-
ture net was composed of two fully connected layers with Re LU nonlinearities
and for the predictor net a neural network with four layers, t anh nonlinearities
and skip connections. The hidden dimension of both the feature and predictor
net was varied from 50 to 300.

For the training of both networks, batch sizes of 32, 64 and 128 were considered
and training was carried out until the cost had plateaued. An initial learning
rate of 0.001 with a decay rate of 0.99 was used in all cases. A different random
seed was used to initialise the parameters each time.

V-15







Paper VI

Title
Evaluating Scalable Bayesian Deep Learning Methods for Robust
Computer Vision

Authors
Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Schon

Edited version of
F. K. Gustafsson, M. Danelljan, and T. B. Schon. “Evaluating Scalable Bayesian Deep
Learning Methods for Robust Computer Vision.” In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPR Work-
shops). 2020






Evaluating Scalable Bayesian Deep
Learning Methods for Robust
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Abstract

While deep neural networks have become the go-to approach in computer
vision, the vast majority of these models fail to properly capture the uncer-
tainty inherent in their predictions. Estimating this predictive uncertainty can
be crucial, for example in automotive applications. In Bayesian deep learn-
ing, predictive uncertainty is commonly decomposed into the distinct types
of aleatoric and epistemic uncertainty. The former can be estimated by let-
ting a neural network output the parameters of a certain probability distribu-
tion. Epistemic uncertainty estimation is a more challenging problem, and
while different scalable methods recently have emerged, no extensive com-
parison has been performed in a real-world setting. We therefore accept this
task and propose a comprehensive evaluation framework for scalable epis-
temic uncertainty estimation methods in deep learning. Our proposed frame-
work is specifically designed to test the robustness required in real-world com-
puter vision applications. We also apply this framework to provide the first
properly extensive and conclusive comparison of the two current state-of-the-
art scalable methods: ensembling and MC-dropout. Our comparison demon-
strates that ensembling consistently provides more reliable and practically use-
ful uncertainty estimates. Code is available at https://github.com/
fregu856/evaluating bdl.

1 Introduction

Deep Neural Networks (DNNs) have become the standard paradigm within
most computer vision problems due to their astonishing predictive power com-
pared to previous alternatives. Current applications include many safety-critical
tasks, such as street-scene semantic segmentation [5, 6, 7], 3D object detec-
tion [8, 9] and depth completion [4, 10]. Since erroneous predictions can have
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Input Prediction Predictive uncertainty

Depth completion
Synthetic

Synthetic Real

Semantic segmentation
Real

Figure 1: We propose a comprehensive evaluation framework for scalable epistemic
uncertainty estimation methods in deep learning. The proposed framework employs
state-of-the-art DNN models on the tasks of depth completion and street-scene seman-
tic segmentation. All models are trained exclusively on synthetic data (the Virtual
KITTI [1] and Synscapes [2] datasets). We here show the input (left), prediction (cen-
ter) and estimated predictive uncertainty (right) for ensembling with A/ = 8 ensemble
members, on both synthetic and real (the KITTI [3, 4] and Cityscapes [5] datasets) ex-
ample validation images. Black pixels correspond to minimum predictive uncertainty,
white pixels to maximum uncertainty.

disastrous consequences, such applications require an accurate measure of the
predictive uncertainty. The vast majority of these DNN models do however
fail to properly capture the uncertainty inherent in their predictions. They are
thus not fully capable of the type of uncertainty-aware reasoning that is highly
desired e.g. in automotive applications.

The approach of Bayesian deep learning aims to address this issue in a princi-
pled manner. Here, predictive uncertainty is commonly decomposed into two
distinct types, which both should be captured by the learned DNN [11, 12].
Epistemic uncertainty accounts for uncertainty in the DNN model parameters,
while aleatoric uncertainty captures inherent and irreducible data noise. Input-
dependent aleatoric uncertainty about the target y arises due to e.g. noise and
ambiguities inherent in the input =. This is present for instance in street-scene
semantic segmentation, where image pixels at object boundaries are inherently
ambiguous, and in 3D object detection where the location of a distant object is
less certain due to noise and limited sensor resolution. In many computer vi-
sion applications, this aleatoric uncertainty can be effectively estimated by let-
ting a DNN directly output the parameters of a certain probability distribution,
modeling the conditional distribution p(y|z) of the target given the input. For
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classification tasks, a predictive categorical distribution is commonly realized
by a softmax output layer, although recent work has also explored Dirichlet
models [13, 14, 15]. For regression, Laplace and Gaussian models have been
employed [16, 17, 12, 18].

Directly predicting the conditional distribution p(y|z) with a DNN does how-
ever not capture epistemic uncertainty, as information about the uncertainty in
the model parameters is disregarded. This often leads to highly confident pre-
dictions that are incorrect, especially for inputs x that are not well-represented
by the training distribution [19, 18]. For instance, a DNN can fail to generalize
to unfamiliar weather conditions or environments in automotive applications,
but still generate confident predictions. Reliable estimation of epistemic uncer-
tainty is thus of great importance. However, this task has proven to be highly
challenging, largely due to the vast dimensionality of the parameter space,
which renders standard Bayesian inference approaches intractable. To tackle
this problem, a wide variety of approximations have been explored [20, 21, 22,
23, 24, 25, 26], but only a small number have been demonstrated to be appli-
cable even to the large-scale DNN models commonly employed in real-world
computer vision tasks. Among such scalable methods, MC-dropout [11, 12,
27, 28] and ensembling [18, 17, 16] are clearly the most widely employed, due
to their demonstrated effectiveness and simplicity. While scalable techniques
for epistemic uncertainty estimation recently have emerged, the research com-
munity however lacks a common and comprehensive evaluation framework for
such methods. Consequently, both researchers and practitioners are currently
unable to properly assess and compare newly proposed methods. In this work,
we therefore accept this task and set out to design exactly such an evaluation
framework, aiming to benefit and inspire future research in the field.

Previous studies have provided only partial insight into the performance of
different scalable methods for epistemic uncertainty estimation. Kendall and
Gal [12] evaluated MC-dropout alone on the tasks of semantic segmentation
and monocular depth regression, providing mainly qualitative results. Laksh-
minarayanan et al. [18] introduced ensembling as a non-Bayesian alternative
and found it to generally outperform MC-dropout. Their experiments were
however based on relatively small-scale models and datasets, limiting the real-
world applicability. Ilg et al. [16] compared ensembling and MC-dropout on
the task of optical-flow estimation, but only in terms of the AUSE metric which
is a relative measure of the uncertainty estimation quality. While finding en-
sembling to be advantageous, their experiments were also limited to a fixed
number (M = 8) of ensemble members and MC-dropout forward passes, not
allowing a completely fair comparison. Ovadia et al. [29] also fixed the num-
ber of ensemble members, and moreover only considered classification tasks.
We improve upon this previous work and propose an evaluation framework
that actually enables a conclusive ranking of the compared methods.
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Contributions We propose a comprehensive evaluation framework for scal-
able epistemic uncertainty estimation methods in deep learning. The proposed
framework is specifically designed to test the robustness required in real-world
computer vision applications, and employs state-of-the-art DNN models on the
tasks of depth completion (regression) and street-scene semantic segmentation
(classification). It also employs a novel combination of quantitative evaluation
metrics which explicitly measures the reliability and practical usefulness of
estimated predictive uncertainties. We apply our proposed framework to pro-
vide the first properly extensive and conclusive comparison of the two current
state-of-the-art scalable methods: ensembling and MC-dropout. This compari-
son demonstrates that ensembling consistently outperforms the highly popular
MC-dropout method. Our work thus suggests that ensembling should be con-
sidered the new go-to approach, and encourages future research to understand
and further improve its efficacy. Figure 1 shows example predictive uncer-
tainty estimates generated by ensembling. Our framework can also directly be
applied to compare other scalable methods, and we encourage external usage
with publicly available code.

In our proposed framework, we predict the conditional distribution p(y|z) in
order to estimate input-dependent aleatoric uncertainty. The methods for epis-
temic uncertainty estimation are then compared by quantitatively evaluating
the estimated predictive uncertainty in terms of the relative AUSE metric and
the absolute measure of uncertainty calibration. Our evaluation is the first to
include both these metrics, and furthermore we apply them to both regression
and classification tasks. To provide a deeper and more fair analysis, we also
study all metrics as functions of the number of samples M, enabling a highly
informative comparison of the rate of improvement. Moreover, we simulate
challenging real-world conditions found e.g. in automotive applications, where
robustness to out-of-domain inputs is required to ensure safety, by training our
models exclusively on synthetic data and evaluating the predictive uncertainty
on real-world data. By analyzing this important domain shift problem, we sig-
nificantly increase the practical applicability of our evaluation. We also com-
plement our real-world analysis with experiments on illustrative toy regression
and classification problems. Lastly, to demonstrate the evaluation rigor neces-
sary to achieve a conclusive comparison, we repeat each experiment multiple
times and report results together with the observed variation.

2 Predictive Uncertainty Estimation using Bayesian
Deep Learning

DNNs have been shown to excel at a wide variety of supervised machine learn-
ing problems, where the task is to predict a target value y € ) given an input
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Figure 2: Toy regression problem illustrating the task of predictive uncertainty estima-
tion with DNNs. The true data generator p(y|x) is a Gaussian, where the mean is given
by the solid black line and the variance is represented in shaded gray. The predictive
mean and variance are given by the solid red line and the shaded red area, respectively.
(a) Training dataset with N =1 000 examples. (b) A DNN trained to directly predict
the target y captures no notion of uncertainty. (¢) A corresponding Gaussian DNN
model (2) trained via maximum-likelihood captures aleatoric but not epistemic uncer-
tainty. (d) The Gaussian model instead trained via approximate Bayesian inference (4)
captures both aleatoric and epistemic uncertainty.

x € X. In computer vision, the input space X" often corresponds to the space
of images. For classification problems, the target space ) consists of a finite
set of C' classes, while a regression problem is characterized by a continuous
target space, e.g. )V = RX. For our purpose, a DNN is defined as a function
fo : X — U, parameterized by § € R, that maps an input 2 € X’ to an output
fo(x) € U. Next, we cover alternatives for estimating both the aleatoric and
epistemic uncertainty in the predictions of DNN models.

Aleatoric Uncertainty In classification problems, aleatoric uncertainty is
commonly captured by predicting a categorical distribution p(y|z,6). This
is implemented by letting the DNN predict logit scores fg(x) € R®, which are
then normalized by a Softmax function,

p(y!x, 9) = Cat(y; 59(33))7 (1)
sg(x) = Softmax(fp(x)).
Given a training set of N i.i.d. sample pairs D = {X,Y} = {(z;,v:)}Y,,
(xi,yi) ~ p(z,y), the data likelihood is obtained as p(Y|X,6) =
Hij\il p(yi|xi,0). The maximum-likelihood estimate of the model pa-
rameters, éMLE, is obtained by minimizing the negative log-likelihood
— >, logp(y;|z;, ). For the Categorical model (1), this is equivalent to min-
imizing the well-known cross-entropy loss. At test time, the trained model
predicts the distribution p(y*|z*, Oupg) over the target class variable y*, given
a test input z*. These DNN models are thus able to capture input-dependent
aleatoric uncertainty, by outputting less confident predictions for inherently

ambiguous cases.

In regression, the most common approach is to let the DNN directly predict
targets, y* = f;(z*). The parameters 0 are learned by minimizing e.g. the L?
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or L' loss over the training dataset [8, 9]. However, such direct regression does
not model aleatoric uncertainty. Instead, recent work [16, 12, 18] has explored
predicting the distribution p(y|x,#), similar to the classification case above.
For instance, p(y|z, ) can be parameterized by a Gaussian distribution [17,
18], giving the following model in the 1D case,

p(ylz,0) = N (y; po(2), 0 (),

fo(x) = [no(w) logog(x)]" € R%. 2)

Here, the DNN predicts the mean () and variance o3(z) of the target y.
The variance is naturally interpreted as a measure of input-dependent aleatoric
uncertainty. As in classification, the model parameters 6 are learned by mini-
mizing the negative log-likelihood — ), log p(y;|x;, ).

Epistemic Uncertainty While the above models can capture aleatoric uncer-
tainty, stemming from the data, they are agnostic to the uncertainty in the model
parameters 6. A principled means to estimate this epistemic uncertainty is to
perform Bayesian inference. The aim is to utilize the posterior distribution
p(0|D), which is obtained from the data likelihood and a chosen prior p(¢) by
applying Bayes’ theorem. The uncertainty in the parameters 6 is then marginal-
ized out to obtain the predictive posterior distribution,

p(y*|*, D) = / p(y* |2, 0)p(6]D)do

1 M . A 3)
~ 0 2P ", 09), 09 ~ p(o|D).
=1

Here, the generally intractable integral in (3) is approximated using M Monte
Carlo samples (9, ideally drawn from the posterior. In practice however, ob-
taining samples from the true posterior p(6|D) is virtually impossible, requir-
ing an approximate posterior ¢(f) ~ p(6|D) to be used. We thus obtain the
approximate predictive posterior as,

M

~ * 1 i 7

py*a*, D) & = > plylat,0%), 09~ q(0), 4
=1

which enables us to estimate both aleatoric and epistemic uncertainty of the
prediction. The quality of the approximation (4) depends on the number of
samples M and the method employed for generating ¢(6). Prior work on such
approximate Bayesian inference methods is discussed in Section 3. For the Cat-
egorical model (1), p(y*|z*, D) = Cat(y*; 5(z*)), 8(2*) = 2 S, s (7).
For the Gaussian model (2), p(y*|z*, D) is a uniformly weighted mixture of
Gaussian distributions. We approximate this mixture with a single Gaussian,
see Appendix A for details.
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Ilustrative Example To visualize and provide intuition for the problem of
predictive uncertainty estimation with DNNs, we consider the problem of re-
gressing a sinusoid corrupted by input-dependent Gaussian noise,

y ~N(uz),0%(x)),

plw) =sin(z), o(x) =0.15(1+e )" )

Training data {(z;, v;) }1°)° is only given in the interval [—3, 3], see Figure 2a.

A DNN trained to directly predict the target y is able to accurately regress
the mean for 2* € [-3,3], see Figure 2b. However, this model does not
capture any notion of uncertainty. A corresponding Gaussian DNN model (2)
trained via maximume-likelihood obtains a predictive distribution that closely
matches the ground truth for z* € [—3, 3], see Figure 2c. While correctly ac-
counting for aleatoric uncertainty, this model generates overly confident pre-
dictions for inputs |x*| > 3 not seen during training. Finally, the Gaussian
DNN model trained via approximate Bayesian inference (4), with a prior dis-
tribution p(#) = N (0, Ip)and M = 1000 samples obtained via Hamiltonian
Monte Carlo [30], is additionally able to predict more reasonable uncertainties
in the region with no available training data, see Figure 2d.

3 Related Work

Here, we discuss prior work on approximate Bayesian inference. We also note
that ensembling, which is often considered a non-Bayesian alternative, in fact
can naturally be viewed as an approximate Bayesian inference method.

Approximate Bayesian Inference The method employed for approximating
the posterior ¢(0) ~ p(8|D) = p(Y|X,0)p(8)/p(Y|X) is a crucial choice,
determining the quality of the approximate predictive posterior p(y*|z*, D)
in (4). There exists two main paradigms for constructing ¢(), the first one
being Markov chain Monte Carlo (MCMC) methods. Here, samples 6(*) ap-
proximately distributed according to the posterior are obtained by simulating
a Markov chain with p(@|D) as its stationary distribution. For DNNs, this
approach was pioneered by Neal [20], who employed Hamiltonian Monte
Carlo (HMC) on small feed-forward neural networks. HMC entails perform-
ing Metropolis-Hastings [31, 32] updates using Hamiltonian dynamics based
on the potential energy U(0) = —logp(Y|X,0)p(0). To date, it is consid-
ered a “gold standard” method for approximate Bayesian inference, but does
not scale to large DNNs or large-scale datasets. Therefore, Stochastic Gradi-
ent MCMC (SG-MCMC) [33] methods have been explored, in which stochas-
tic gradients are utilized in place of their full-data counterparts. SG-MCMC
variants include Stochastic Gradient Langevin Dynamics (SGLD) [23], where
samples 0() are collected from the parameter trajectory given by the update
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equation 0y 1 = 0y — athﬁ(Ht) + v/2a4€;, where €, ~ N(0,1) and V@ﬁ(@)
is the stochastic gradient of U (). Save for the noise term /2a€;, this update
is identical to the conventional SGD update when minimizing the maximum-a-
posteriori (MAP) objective — log p(Y'| X, 8)p(0). Similarly, Stochastic Gradi-
ent HMC (SGHMC) [24] corresponds to SGD with momentum injected with
properly scaled noise. Given a limited computational budget, SG-MCMC
methods can however struggle to explore the high-dimensional and highly
multi-modal posteriors of large DNNs. To mitigate this problem, Zhang et
al. [34] proposed to use a cyclical stepsize schedule to help escaping local
modes in p(0|D).

The second paradigm is that of Variational Inference (VI) [21, 35, 36, 22].
Here, a distribution g (@) parameterized by variational parameters ¢ is explic-
itly chosen, and the best possible approximation is found by minimizing the
Kullback-Leibler (KL) divergence with respect to the true posterior p(6|D).
While principled, VI methods generally require sophisticated implementations,
especially for more expressive variational distributions g4(6) [37, 38, 39]. A
particularly simple and scalable method is MC-dropout [40]. It entails using
dropout [41] also at test time, which can be interpreted as performing VI with
a Bernoulli variational distribution [40, 27, 28]. The approximate predictive
posterior p(y*|z*, D) in (4) is obtained by performing M stochastic forward
passes on the same input.

Ensembling Lakshminarayanan et al. [18] created a parametric model
p(yl|x, @) of the conditional distribution using a DNN fy, and learned multi-
ple point estimates {é(m)}%zl by repeatedly minimizing the MLE objective
—logp(Y'| X, ) with random initialization. They then averaged over the cor-
responding parametric models to obtain the following predictive distribution,

M
Al x| Kk 1 *| % pn(m
p'la*) & 52D p(yla™, 0). (6)

m=1

The authors considered this a non-Bayesian alternative to predictive uncer-
tainty estimation. However, since the point estimates {é(m)}%[:l always can
be seen as samples from some distribution (@), we note that (6) is virtually
identical to the approximate predictive posterior in (4). Ensembling can thus
naturally be viewed as approximate Bayesian inference, where the level of ap-
proximation is determined by how well the implicit sampling distribution ¢(6)
approximates the posterior p(6|D). Ideally, {#™}M_ should be distributed
exactly according to p(6|D) o p(Y|X,0)p(#). Since p(Y'|X,0) is highly
multi-modal in the parameter space for DNNs [42, 43], so is p(6|D). By mini-
mizing — log p(Y'| X, 6) multiple times, starting from randomly chosen initial
points, we are likely to find different local optima. Ensembling can thus gen-
erate a compact set of samples {é(m)}%zl that, even for small values of M,

captures this important aspect of multi-modality in p(0|D).
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Figure 3: Toy binary classification problem. (a) True data generator, red and blue
represents the two classes. (b) Training dataset with N =1 040 examples. (¢) “Ground
truth” predictive distribution, obtained using HMC [30].

4 Experiments

We conduct experiments both on illustrative toy regression and classification
problems (Section 4.1), and on the real-world computer vision tasks of depth
completion (Section 4.2) and street-scene semantic segmentation (Section 4.3).
Our evaluation is motivated by real-world conditions found e.g. in automotive
applications, where robustness to varying environments and weather condi-
tions is required to ensure safety. Since images captured in these different
circumstances could all represent distinctly different regions of the vast input
image space, it is infeasible to ensure that all encountered inputs will be well-
represented by the training data. Thus, we argue that robustness to out-of-
domain inputs is crucial in such applications. To simulate these challenging
conditions and test the robustness required for such real-world scenarios, we
train all models on synthetic data and evaluate them on real-world data. To im-
prove rigour of our evaluation, we repeat each experiment multiple times and
report results together with the observed variation. A more detailed descrip-
tion of all results are found in the Appendix (Appendix B.3, C.2, D.2). All
experiments are implemented in PyTorch [44].

4.1 Illustrative Toy Problems

We first present results on illustrative toy problems to gain insights into how en-
sembling and MC-dropout fare against other approximate Bayesian inference
methods. For regression, we conduct experiments on the 1D problem defined
in (5) and visualized in Figure 2. We use the Gaussian model (2) with two
separate feed-forward neural networks outputting ug(z) and log o (z). We
evaluate the methods by quantitatively measuring how well the obtained pre-
dictive distributions approximate that of the “gold standard” HMC [30] with
M =1000 samples and prior p(f) = N (0, Ip). We thus consider the predic-
tive distribution visualized in Figure 2d ground truth, and take as our metric
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AN

(a) Ensembling.

(b) MC-dropout.

(c) Ensembling. (d) MC-dropout.

Figure 4: Illustrative toy problems - example predictive distributions for ensembling
and MC-dropout with M =16 samples.
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Figure 5: Illustrative toy problems - quantitative results. The plots show the KL diver-
gence (|) between the predictive distribution estimated by each method and the HMC
“ground truth”, for different number of samples M.

the KL divergence Dgi(p || pumc) with respect to this target distribution
pumc- For classification, we conduct experiments on the binary classification
problem in Figure 3. The true data generator is visualized in Figure 3a, where
red and blue represents the two classes. The training dataset contains 520 ex-
amples of each class, and is visualized in Figure 3b. We use the Categorical
model (1) with a feed-forward neural network. As for regression, we quanti-
tatively measure how well the obtained predictive distributions approximate
that of HMC, which is visualized in Figure 3c. Further details are provided in
Appendix B.

Results A comparison of ensembling, MC-dropout, SGLD and SGHMC in
terms of Dy (p || pumc) is found in Figure 5. The Adam optimizer [45] is
here used for both ensembling and MC-dropout. We observe that ensembling
consistently outperforms the compared methods, and MC-dropout in particular.
Even compared to SG-MCMC variants such as SGLD and SGHMC, ensem-
bling thus provides a better approximation to the MCMC method HMC. This
result is qualitatively supported by visualized predictive distributions found
in Appendix B.5. Example predictive distributions for ensembling and MC-
dropout with M = 16 are shown in Figure 4. We observe that ensembling
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Figure 6: Depth completion - quantitative results. The plots show a comparison of
ensembling and MC-dropout in terms of AUSE, AUCE and RMSE on the KITTI depth
completion validation dataset, for different number of samples M.

provides reasonable approximations to HMC even for quite small values of
M, especially compared to MC-dropout.

4.2 Depth Completion

In depth completion, we are given an image Zimg <€ RM>wX3 from a forward-
facing camera and an associated sparse depth map Zgparse € R"*®_ Only non-
zero pixels of Tgparse correspond to LIDAR depth measurements, projected onto
the image plane. The goal is to predict a dense depth map y € R**% of the
scene. We utilize the KITTI depth completion [3, 4] and Virtual KITTI [1]
datasets. KITTI depth completion contains more than 80000 images Zimg,
sparse depth maps Zgparse and semi-dense target maps y. There are 1000 se-
lected validation examples, which we use for evaluation. Only about 4% of
the pixels in Zgpare are non-zero and thus correspond to depth measurements.
The semi-dense target maps are created by merging the LIDAR scans from 11
consecutive frames into one, producing y in which roughly 30% of the pixels
are non-zero. Virtual KITTI contains synthetic images x;,g and dense depth
maps Zqense €xtracted from 5 driving sequences in a virtual world. It contains
2126 unique frames, of which there are 10 different versions corresponding
to various simulated weather and lighting conditions. We take sequence 0002
as our validation set, leaving a total of 18 930 training examples. We create
targets y for training by setting all pixels in Zgense corresponding to a depth
> 80m to 0, and then also randomly sample 5% of the remaining non-zero
pixels uniformly to create Zgparse. We use the DNN model presented by Ma
et al. [10]. The inputs Zimg, Tsparse are separately processed by initial convolu-
tional layers, concatenated and fed to an encoder-decoder architecture based
on ResNet34 [46]. We employ the Gaussian model (2) by duplicating the fi-
nal layer, outputting both ;z € R?*™ and logo? € R"** instead of only the
predicted depth map € R"**. We also employ the same basic training pro-
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Figure 7: Depth completion - condensed calibration plots for ensembling and MC-
dropout with M = 16.

cedure as Ma et al. [10] to train all our models, see Appendix C.1 for details.
For the MC-dropout comparison, we take inspiration from Kendall et al. [27]
and place a dropout layer with drop probability p = 0.5 after the three last
encoder blocks and the four first decoder blocks.

Evaluation Metrics We evaluate the methods in terms of the Area Under
the Sparsification Error curve (AUSE) metric, as introduced by Ilg et al. [16].
AUSE is a relative measure of the uncertainty estimation quality, comparing
the ordering of predictions induced by the estimated predictive uncertainty
(sorted from least to most uncertain) with the “oracle” ordering in terms of the
true prediction error. The metric thus reveals how well the estimated uncer-
tainty can be used to sort predictions from worst (large true prediction error)
to best (small prediction error). We compute AUSE in terms of Root Mean
Squared Error (RMSE) and based on all pixels in the entire evaluation dataset.
A perfect AUSE score can however be achieved even if the true predictive
uncertainty is consistently underestimated. As an absolute measure of uncer-
tainty estimation quality, we therefore also evaluate the methods in terms of cal-
ibration [47, 48]. In classification, the Expected Calibration Error (ECE) [19,
49] is a standard metric used to evaluate calibration. A well-calibrated model
should then produce classification confidences which match the observed pre-
diction accuracy, meaning that the model is not over-confident (outputting
highly confident predictions which are incorrect), nor over-conservative. We
here employ a metric that can be considered a natural generalization of ECE to
the regression setting. Since our models output the mean 1 € R and variance
o2 € R of a Gaussian distribution for each pixel, we can construct pixel-wise
prediction intervals p + &1 (pT_H)O' of confidence level p €]0, 1], where ® is
the CDF of the standard normal distribution. When computing the proportion
of pixels for which the prediction interval covers the true target y € R, we
expect this value, denoted p, to equal p €]0, 1] for a perfectly calibrated model.
We compute the absolute error with respect to perfect calibration, |p — p|, for
100 values of p €]0, 1[ and use the area under this curve as our metric, which
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Figure 8: Street-scene semantic segmentation - quantitative results. The plots show a
comparison of ensembling and MC-dropout in terms of AUSE, ECE and mloU on the
Cityscapes validation dataset, for different number of samples M.

we call Area Under the Calibration Error curve (AUCE). Lastly, we also eval-
uate in terms of the standard RMSE metric.

Results A comparison of ensembling and MC-dropout in terms of AUSE,
AUCE and RMSE on the KITTI depth completion validation dataset is found
in Figure 6. We observe in Figure 6a that ensembling consistently outperforms
MC-dropout in terms of AUSE. However, the curves decrease as a function of
M in a similar manner. Sparsification plots and sparsification error curves are
found in Appendix C.3. A ranking of the methods can be more readily con-
ducted based on Figure 6b, where we observe a clearly improving trend as M
increases for ensembling, whereas MC-dropout gets progressively worse. This
result is qualitatively supported by the calibration plots found in Appendix C.3
and Figure 7. Note that M = 1 corresponds to the baseline of only estimating
aleatoric uncertainty.

4.3 Street-Scene Semantic Segmentation

In this task, we are given an image z € R"***3 from a forward-facing camera.
The goal is to predict y of size h x w, in which each pixel is assigned to one
of C different class labels (road, sidewalk, car, etc.). We utilize the popular
Cityscapes [5] and recent Synscapes [2] datasets. Cityscapes contains 5 000
finely annotated images, mainly collected in various German cities. The an-
notations includes 30 class labels, but only C' = 19 are used in the training
of models. Its validation set contains 500 examples, which we use for evalua-
tion. Synscapes contains 25 000 synthetic images, all captured in virtual urban
environments. To match the size of Cityscapes, we randomly select 2975 of
these for training and 500 for validation. The images are annotated with the
same class labels as Cityscapes. We use the DeepLabv3 DNN model presented
by Chen et al. [6]. The input image x is processed by a ResNet101 [46], out-
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Figure 9: Street-scene semantic segmentation - example reliability diagrams for the
two methods with M = 16.

putting a feature map of stride 8. The feature map is further processed by an
ASPP module and a 1 x 1 convolutional layer, outputting logits at 1/8 of the
original resolution. These are then upsampled to image resolution using bilin-
ear interpolation. The conventional Categorical model (1) is thus used for each
pixel. We base our implementation on the one by Yuan and Wang [7], and also
follow the same basic training procedure, see Appendix D.1 for details. For ref-
erence, the model obtains an mloU [50] of 76.04% when trained on Cityscapes
and evaluated on its validation set. For the MC-dropout comparison, we take
inspiration from Mukhoti and Gal [28] and place a dropout layer with p = 0.5
after the four last ResNet blocks.

Evaluation Metrics As for depth completion, we evaluate the methods in
terms of the AUSE metric. In this classification setting, we compare the “or-
acle” ordering of predictions with the one induced by the predictive entropy.
We compute AUSE in terms of Brier score and based on all pixels in the eval-
uation dataset. We also evaluate in terms of calibration by the ECE metric [19,
49]. All predictions are here partitioned into L bins based on the maximum as-
signed confidence. For each bin, the difference between the average predicted
confidence and the actual accuracy is then computed, and ECE is obtained as
the weighted average of these differences. We use L = 10 bins of equal size.

Results A comparison of ensembling and MC-dropout in terms of AUSE,
ECE and mloU on the Cityscapes validation dataset is found in Figure 8. We
observe that the metrics clearly improve as functions of M for both ensem-
bling and MC-dropout, demonstrating the importance of epistemic uncertainty
estimation. The rate of improvement is generally greater for ensembling. For
ECE, we observe in Figure 8b a drastic improvement for ensembling as M is
increased, followed by a distinct plateau. According to the condensed relia-
bility diagrams in Appendix D.3, this corresponds to a transition from clear
model over-confidence to slight over-conservatism. For MC-dropout, the cor-
responding diagrams suggest a stagnation while the model still is somewhat
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over-confident. Example reliability diagrams for M = 16 are shown in Fig-
ure 9, in which this over-confidence for MC-dropout can be observed. Note
that the relatively low mloU scores reported in Figure 8c, obtained by models
trained exclusively on Synscapes, are expected [2] and caused by the intention-
ally challenging domain gap between synthetic and real-world data.

5 Discussion & Conclusion

We proposed a comprehensive evaluation framework for scalable epistemic
uncertainty estimation methods in deep learning. The proposed framework
is specifically designed to test the robustness required in real-world computer
vision applications. We applied our proposed framework and provided the first
properly extensive and conclusive comparison of ensembling and MC-dropout,
the results of which demonstrates that ensembling consistently provides more
reliable and practically useful uncertainty estimates. We attribute the success
of ensembling to its ability, due to the random initialization, to capture the
important aspect of multi-modality present in the posterior distribution p(6|D)
of DNNs. MC-dropout has a large design-space compared to ensembling, and
while careful tuning of MC-dropout potentially could close the performance
gap on individual tasks, the simplicity and general applicability of ensembling
must be considered key strengths. The main drawback of both methods is the
computational cost at test time that grows linearly with M, limiting real-time
applicability. Here, future work includes exploring the effect of model pruning
techniques [51, 52] on predictive uncertainty quality. For ensembling, sharing
early stages of the DNN among ensemble members is also an interesting future
direction. A weakness of ensembling is the additional training required, which
also scales linearly with M. The training of different ensemble members can
however be performed in parallel, making it less of an issue in practice given
appropriate computing infrastructure. In conclusion, our work suggests that
ensembling should be considered the new go-to method for scalable epistemic
uncertainty estimation.
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Supplementary Material

In this supplementary material, we provide additional details and results. It
consists of Appendix A-D. Note that figures in this supplementary material
are numbered with the prefix “S”. Numbers without this prefix refer to the
main paper.

A Approximating a Mixture of Gaussian Distributions

For the Gaussian model (2), p(y*|z*, D) in (4) is a uniformly weighted mixture
of Gaussian distributions. We approximate this mixture with a single Gaussian
parameterized by the mixture mean and variance:

p(y*|z*, D) MZP *a*,00), 00 ~ q(9),

p(y*|x*, D) MZNZ/ o (z ),ng(x*)), G(i)Nq(H),

p(y*la*, D) = N(y*; i(x¥), 6°(x)),

1 o 2 1 & 02 9
= M;N9<i>($)> 6°(z) = M; ((Mem(ai)—u(l‘)) —1—09<,;>(33)>.

B Illustrative Toy Problems

In this appendix, further details on the illustrative toy problems experiments
(Section 4.1) are provided.

B.1 Experimental Setup

Figure 5a (regression) shows Dk (p || pumc) computed on [—7,7]. All train-
ing data was given in [—3, 3].

Figure 5b (classification) shows Dgi(p || pumc) computed on the region
—6 < 21 €6, -6 < 29 < 6. All training data was given in the region
0<z <3,-3<129<3.

For regression, Dx.(p || pumc) is computed using the formula for KL di-
vergence between two Gaussian distributions p (z) = N (z; u1,0%), pa(x) =
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For classification, Dx(p || pumc) is computed using the formula for KL
divergence between two discrete distributions ¢; (), g2(x):
(x)

Dxi(qr || g2) ZCA 10g
zeX

(z)

For both regression and classification, HMC with prior p(d) = N(0,Ip)
and M = 1000 samples is implemented using Pyro [53]. Specifi-
cally, we use pyro.infer.mcmc.MCMC with pyro.infer.mcmc.NUTS as kernel,
num_samples = 1 000 and warmup_steps = 1 000.

B.2 Implementation Details

For regression, we use the Gaussian model (2) with two separate feed-forward
neural networks outputting /19 () and log o3 (z). Both neural networks have 2
hidden layers of size 10.

For classification, we use the Categorical model (1) with a feed-forward neural
network with 2 hidden layers of size 10.

For the MC-dropout comparison, we place a dropout layer after the first hidden
layer of each neural network. For regression, we use a drop probability p = 0.2.
For classification, we use p = 0.1.

For ensembling, we train all ensemble models for 150 epochs with the Adam
optimizer, a batch size of 32 and a fixed learning rate of 0.001.

For MC-dropout, we train models for 300 epochs with the Adam optimizer, a
batch size of 32 and a fixed learning rate of 0.001.

For ensembling and MC-dropout, we minimize the MAP objective
—logp(Y|X,0)p(6). In our case where the model parameters # € RY and
p(0) = N(0,Ip), this corresponds to the following loss for regression:

N s — )2
L(0) = ;,2; W + log 62(z;) + %QTQ,

For classification, where y; = [¥i1...YiC ]T (one-hot encoded) and 5(z;) =
[5(x;)1...8(z;)c]" is the Softmax output, it corresponds to the following
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loss:

e 1
- ) &( - _— a7
=-% EZ kE_ Yi i log §(xi)i + 2N0 0.

For SGLD, we extract samples from the parameter trajectory given by the up-
date equation:

Or1 =0 — atvé’ﬁ(et) + V20 €,

where ¢ ~ N(0,1), VoU(#) is the stochastic gradient of U(f) =
—logp(Y'|X,0)p(0) and «y is the stepsize. We run it for a total number of
steps corresponding to 256 - 150 epochs with a batch size of 32. The stepsize
oy is decayed according to:

t
at:ao(l—f)o'g, t=1,2,...,T,

where T is the total number of steps, ag = 0.01 (the initial stepsize) for regres-
sion and o = 0.05 for classification. M € {8, 16, 32,64, 128,256} samples
are extracted starting at step t = int(0.757"), ending at step t = T" and spread
out evenly between.

For SGHMC, we extract samples from the parameter trajectory given by the
update equation:

Orr1 = 0p + 14,
T4l = (1 — 77)7”15 — atV9[~J(9t) =+ \/ Qnatet,

where ¢, ~ N(0,1), VoU(6) is the stochastic gradient of U(f) =
—logp(Y|X,0)p(6), oy is the stepsize and n = 0.1. We run it for a total
number of steps corresponding to 256 - 150 epochs with a batch size of 32. The
stepsize «; is decayed according to:

t
o =ap(l— =) t=1,2,...,T,

T

where T is the total number of steps, g = 0.001 (the initial stepsize) for
regression and oy = 0.01 for classification. M € {8,16,32, 64,128,256}
samples are extracted starting at step ¢ = int(0.757"), ending at step ¢t = T" and
spread out evenly between.

For all models, we randomly initialize the parameters # using the default ini-
tializer in PyTorch.

B.3 Description of Results

The results in Figure 5a, 5b were obtained in the following way:
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* Ensembling: 1024 models were trained using the same training proce-
dure, the mean and standard deviation was computed based on 1024 /M
unique sets of models for M € {8, 16, 32,64, 128,256}.

* MC-dropout: 10 models were trained using the same training procedure,
based on which the mean and standard deviation was computed.

* SGLD: 6 models were trained using the same training procedure, based
on which the mean and standard deviation was computed.

* SGHMC: 6 models were trained using the same training procedure,
based on which the mean and standard deviation was computed.

B.4 Additional Results

Figure S1 and Figure S2 show the same comparison as Figure 5a, 5b, but using
SGD and SGD with momentum for ensembling and MC-dropout, respectively.
We observe that ensembling consistently outperforms the compared methods
for classification, but that SGLD and SGHMC has better performance for re-
gression in these cases. SGLD and SGHMC are however trained for 256 times
longer than each ensemble model, complicating the comparison somewhat. If
SGLD and SGHMC instead are trained for just 64 times longer than each en-
semble model, we observe in Figure S3 that they are consistently outperformed
by ensembling.

For MC-dropout using Adam, we also varied the drop probability p and chose
the best performing variant. These results are found in Figure S4, in which *
marks the chosen variant.

B.5 Qualitative Results
Here, we show visualizations of predictive distributions obtained by the differ-

ent methods. Figure S5, S9 for ensembling, Figure S6, S10 for MC-dropout,
Figure S7, S11 for SGLD, and Figure S8, S12 for SGHMC.
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Figure S1: Illustrative toy problems, quantitative results. SGD is used for ensembling
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Figure S4: Illustrative toy problems, quantitative results. MC-dropout using Adam.

Figure S5: Toy regression problem, ensembling, M = 64. Examples of predictive
distributions.

Figure S6: Toy regression problem, MC-dropout, M = 64. Examples of predictive

distributions.
AN 1w E ‘ M W

Figure S7: Toy regression problem, SGLD, M = 64. Examples of predictive distri-

butions.

Figure S8: Toy regression problem, SGHMC, M = 64. Examples of predictive dis-
tributions.
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Figure S9: Toy classification problem, ensembling, M = 64. Examples of predictive
distributions.

Figure S10: Toy classification problem, MC-dropout, M = 64. Examples of predic-
tive distributions.

d4333

Figure S11: Toy classification problem, SGLD, M = 64. Examples of predictive

| | E niﬁ | '3! ?:H:
;‘:i; I~

Figure S12: Toy classification problem, SGHMC, M = 64. Examples of predictive
distributions.
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C Depth Completion

In this appendix, further details on the depth completion experiments (Sec-
tion 4.2) are provided.

C.1 Training Details

For both ensembling and MC-dropout, we train all models for 40 000 steps
with the Adam optimizer, a batch size of 4, a fixed learning rate of 10~° and
weight decay of 0.0005. We use a smaller batch size and train for fewer steps
than Ma et al. [10] to enable an extensive evaluation with repeated experiments.
For the same reason, we also train on randomly selected image crops of size
352 x 352. The only other data augmentation used is random flipping along
the vertical axis. We follow Ma et al. [10] and randomly initialize all network
weights from A(0, 10~3) and all network biases with 0s. Models are trained
on a single NVIDIA TITAN Xp GPU with 12GB of RAM.

C.2 Description of Results

The results in Figure 6 (Section 4.2) were obtained in the following way:

* Ensembling: 33 models were trained using the same training procedure,
the mean and standard deviation was computed based on 32 (M = 1), 16
(M = 2,4,8,16) or 4 (M = 32) sets of randomly drawn models. The
same set could not be drawn more than once.

* MC-dropout: 16 models were trained using the same training procedure,
based on which the mean and standard deviation was computed.

C.3 Additional Results

Here, we show sparsification plots, sparsification error curves and calibration
plots. Examples of sparsification plots are found in Figure S13 for ensem-
bling and Figure S14 for MC-dropout. Condensed sparsification error curves
are found in Figure S15 for ensembling and Figure S16 for MC-dropout. Con-
densed calibration plots are found in Figure S17 for ensembling and Figure S18
for MC-dropout.
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Figure S13: Results for ensembling on the KITTI depth completion validation dataset.
Examples of sparsification plots.
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Figure S14: Results for MC-dropout on the KITTI depth completion validation
dataset. Examples of sparsification plots.
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Figure S15: Results for ensembling on the KITTI depth completion validation dataset.
Condensed sparsification error curves.
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Figure S17: Results for ensembling on the KITTI depth completion validation dataset.
Condensed calibration plots.
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Figure S18: Results for MC-dropout on the KITTI depth completion validation
dataset. Condensed calibration plots.
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D Street-Scene Semantic Segmentation

In this appendix, further details on the street-scene semantic segmentation ex-
periments (Section 4.3) are provided.

D.1 Training Details

For ensembling, we train all ensemble models for 40 000 steps with SGD +
momentum (0.9), a batch size of 8 and weight decay of 0.0005. The learning
rate o is decayed according to:

t
at:ao(l—f)o'g, t=1,2,...,T,

where T" = 40000 and ag = 0.01 (the initial learning rate). We train on
randomly selected image crops of size 512 x 512. We choose a smaller crop
size than Yuan and Wang [7] to enable an extensive evaluation with repeated
experiments. The only other data augmentation used is random flipping along
the vertical axis and random scaling in the range [0.5,1.5]. The ResNet101
backbone is initialized with weights' from a model pretrained on the ImageNet
dataset, all other model parameters are randomly initialized using the default
initializer in PyTorch. Models are trained on two NVIDIA TITAN Xp GPUs
with 12GB of RAM each. For MC-dropout, models are instead trained for
60 000 steps.

D.2 Description of Results

The results in Figure 8 (Section 4.3) were obtained in the following way:

* Ensembling: 26 models were trained using the same training procedure,
the mean and standard deviation was computed based on 8 sets of ran-
domly drawn models for M € {1,2,4,8,16}. The same set could not
be drawn more than once.

* MC-dropout: 8 models were trained using the same training procedure,
based on which the mean and standard deviation was computed.

D.3 Additional Results

Here, we show sparsification plots, sparsification error curves and reliability
diagrams. Examples of sparsification plots are found in Figure S19 for ensem-

'http://sceneparsing.csail.mit. edu/model/pretrained resnet/
resnetlO0l-imagenet.pth.
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bling and Figure S20 for MC-dropout. Condensed sparsification error curves
are found in Figure S21 for ensembling and Figure S22 for MC-dropout. Ex-
amples of reliability diagrams with histograms are found in Figure S23 for
ensembling and Figure S24 for MC-dropout. Condensed reliability diagrams
are found in Figure S25 for ensembling and Figure S26 for MC-dropout.
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Figure S19: Results for ensembling on the Cityscapes validation dataset. Examples
of sparsification plots.
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Figure S20: Results for MC-dropout on the Cityscapes validation dataset. Examples
of sparsification plots.
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Figure S21: Results for ensembling on the Cityscapes validation dataset. Condensed
sparsification error curves.
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Figure S22: Results for MC-dropout on the Cityscapes validation dataset. Condensed
sparsification error curves.

VI-38



Reliability diagram - M=1, 0 Reliability diagram - M=2, 0

10
09
08
07
506
8
505
204
03
02
01
0.0 0.0
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10
Confidence Confidence
Reliability diagram - M=4, 0 Reliability diagram - M=8, 0
10 10
09 0.9
0.8 0.8
07 0.7
506 506
3 8
505 5 05
3 3
204 204
03 03
02 0.2
0.1 0.1
0.0 0.0
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10
Confidence Confidence

(©) M =4. (d) M = 8.

Reliability diagram - M=16, 0

Accuracy
o
&

00 01 02 03 04 05 06 07 08 09 10
Confidence

(e) M = 16.

Figure S23: Results for ensembling on the Cityscapes validation dataset. Examples

of reliability diagrams with histograms.
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Figure S24: Results for MC-dropout on the Cityscapes validation dataset. Examples
of reliability diagrams with histograms.
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Figure S25: Results for ensembling on the Cityscapes validation dataset. Condensed

reliability diagrams.
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Figure S26: Results for MC-dropout on the Cityscapes validation dataset. Condensed
reliability diagrams.
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How Reliable is Your Regression
Model’s Uncertainty Under
Real-World Distribution Shifts?

Abstract

Many important computer vision applications are naturally formulated as re-
gression problems. Within medical imaging, accurate regression models have
the potential to automate various tasks, helping to lower costs and improve pa-
tient outcomes. Such safety-critical deployment does however require reliable
estimation of model uncertainty, also under the wide variety of distribution
shifts that might be encountered in practice. Motivated by this, we set out to
investigate the reliability of regression uncertainty estimation methods under
various real-world distribution shifts. To that end, we propose an extensive
benchmark of 8 image-based regression datasets with different types of chal-
lenging distribution shifts. We then employ our benchmark to evaluate many
of the most common uncertainty estimation methods, as well as two state-of-
the-art uncertainty scores from the task of out-of-distribution detection. We
find that while methods are well calibrated when there is no distribution shift,
they all become highly overconfident on many of the benchmark datasets. This
uncovers important limitations of current uncertainty estimation methods, and
the proposed benchmark therefore serves as a challenge to the research com-
munity. We hope that our benchmark will spur more work on how to develop
truly reliable regression uncertainty estimation methods. Code is available at
https://github.com/fregu856/regression uncertainty.

1 Introduction

Regression is a fundamental machine learning problem with many important
computer vision applications [1, 2, 3, 4, 5, 6]. In general, it entails predicting
continuous targets y from given inputs x. Within medical imaging, a number
of tasks are naturally formulated as regression problems, including brain age
estimation [7, 8, 9], prediction of cardiovascular volumes and risk factors [10,
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Figure 1: We propose a benchmark consisting of 8 image-based regression datasets,
testing the reliability of regression uncertainty estimation methods under real-world
distribution shifts. Example train (top row) and test inputs x, along with the corre-
sponding ground truth targets y, are here shown for each of the 8 datasets.

11] and body composition analysis [12, 13]. If machine learning models could
be deployed to automatically regress various such properties within real-world
clinical practice, this would ultimately help lower costs and improve patient
outcomes across the medical system [14].

Real-world deployment in medical applications, and within other safety-critical
domains, does however put very high requirements on such regression mod-
els. In particular, the common approach of training a deep neural network
(DNN) to directly output a predicted regression target § = f(z) is not suf-
ficient, as it fails to capture any measure of uncertainty in the predictions g.
The model is thus unable to e.g. detect inputs = which are out-of-distribution
(OOD) compared to its training data. Since the predictive accuracy of DNNs
typically degrades significantly on OOD inputs [15, 16], this could have po-
tentially catastrophic consequences. Much research effort has therefore been
invested into various approaches for training uncertainty-aware DNN models
[17, 18, 19, 20, 21], to explicitly estimate the uncertainty in the predictions.

These uncertainty estimates must however be accurate and reliable. Other-
wise, if the model occasionally becomes overconfident and outputs highly con-
fident yet incorrect predictions, providing uncertainty estimates might just in-
still a false sense of security — arguably making the model even less suitable
for safety-critical deployment. Specifically, the uncertainty estimates must be
well calibrated and properly align with the prediction errors [22, 23]. More-
over, the uncertainty must remain well calibrated also under the wide variety of
distribution shifts that might be encountered during practical deployment [24,
25]. For example in medical applications, a model trained on data collected
solely at a large urban hospital in the year 2020, for instance, should output
well-calibrated predictions also in 2023, for patients both from urban and rural
areas. While uncertainty calibration, as well as general DNN robustness [26],
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has been evaluated under distribution shifts for classification tasks [27], this
important problem is not well-studied for regression.

Motivated by this, we set out to investigate the reliability of regression uncer-
tainty estimation methods under various real-world distribution shifts. To that
end, we propose an extensive benchmark consisting of 8 image-based regres-
sion datasets (see Figure 1) with different types of distribution shifts. These are
all publicly available and relatively large-scale datasets (6 592 - 20614 train-
ing images), yet convenient to store and train models on (64 x 64 images with
1D regression targets). Four of the datasets are also taken from medical ap-
plications, with clinically relevant distribution shifts. We evaluate some of
the most commonly used regression uncertainty estimation methods, includ-
ing conformal prediction, quantile regression and what is often considered the
state-of-the-art — ensembling [27, 28]. We also consider the approach of selec-
tive prediction [29], in which the regression model can abstain from outputting
predictions for certain inputs. This enables us to evaluate uncertainty scores
from the rich literature on OOD detection [30]. Specifically, we evaluate two
recent scores based on feature-space density [31, 32, 33, 34].

In total, we evaluate 10 different methods. Among them, we find that not a sin-
gle one is close to being perfectly calibrated across all datasets. While the meth-
ods are well calibrated on baseline variants with no distribution shifts, they all
become highly overconfident on many of our benchmark datasets. Also the
conformal prediction methods suffer from this issue, despite their commonly
promoted theoretical guarantees. This highlights the importance of always be-
ing aware of underlying assumptions, assessing whether or not they are likely
to hold in practice. Methods based on the state-of-the-art OOD uncertainty
scores perform well relative to other methods, but are also overconfident in
many cases — the absolute performance is arguably still not sufficient. Our pro-
posed benchmark thus serves as a challenge to the research community, and
we hope that it will spur more work on how to develop truly reliable regression
uncertainty estimation methods.

Summary of Contributions We collect a set of 8 large-scale yet convenient
image-based regression datasets with different types of challenging distribu-
tion shifts. Utilizing this, we propose a benchmark for testing the reliability of
regression uncertainty estimation methods under real-world distribution shifts.
We then employ our benchmark to evaluate many of the most common uncer-
tainty estimation methods, as well as two state-of-the-art uncertainty scores
from OOD detection. We find that all methods become highly overconfident
on many of the benchmark datasets, thus uncovering limitations of current un-
certainty estimation methods.

VII-3




Paper VII — How Reliable is Your Regression Model’s Uncertainty?

2 Background

In a regression problem, the task is to predict a target y* € ) for any given
input * € X. To solve this, we are also given a train set of i.i.d. input-target
pairs, Digin = {(24,vi) V1, (24,9:) ~ p(z,y). What separates regression
from classification is that the target space ) is continuous, ) = RE. In this
work, we only consider the 1D case, i.e. when )V = R. Moreover, the input
space X here always corresponds to the space of images.

Prediction Intervals, Coverage & Calibration Given a desired miscoverage
rate «, a prediction interval Cy(z*) = [Lo(2*), Uy(2*)] C R is a function
that maps the input #* onto an interval that should cover the true regression
target y* with probability 1 —«. For any set {(z7, y*) })¥, of N* examples, the
empirical interval coverage is the proportion of inputs for which the prediction
interval covers the corresponding target,

N*
1
Coverage(Ca) =+ > Iy} € Cala})}- (1)
i=1
If the coverage equals 1 — «, we say that the prediction intervals are perfectly
calibrated. Unless stated otherwise, we set & = 0.1 in this work. The predic-
tion intervals should thus obtain a coverage of 90%.

2.1 Regression Uncertainty Estimation Methods

The most common approach to image-based regression is to train a DNN
fo : X — R that outputs a predicted target § = fy(x) for any input x, us-
ing e.g. the L2 or L1 loss [6]. We are interested in methods which extend this
standard direct regression approach to also provide uncertainty estimates for
the predictions. Specifically, we consider methods which output a prediction
interval C,(x) and a predicted target §(x) € C,(x) for each input x. The
uncertainty in the prediction g(z) is then quantified as the length of the inter-
val C,,(z) (larger interval - higher uncertainty). Some of the most commonly
used regression uncertainty estimation methods fall under this category, as de-
scribed in more detail below.

Conformal Prediction The standard regression approach can be extended by
utilizing the framework of split conformal prediction [35, 36, 21]. This entails
splitting the train set { (z;,y;)} 2\, into a proper train set Z; and a calibration set
Z,. The DNN fy is trained on Z;, and absolute residuals R = {|y; — fp(x;)]| :
i € Iy} are computed on the calibration set Z,. Given a new input z*, a
prediction interval C, (x*) is then constructed from the prediction fy(z*) as,

Ca(l'*) = [f@(l'*) - Ql—a(Rv-IQ)? f9(x*) + Ql—a(R7 IQ)]? (2)
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where Q1_4 (R, Z2) is the (1 — «v)-th quantile of the absolute residuals R. Un-
der the assumption of exchangeably drawn train and test data, this prediction
interval is guaranteed to satisfy P{y* € C(z*)} > 1 — o (marginal coverage
guarantee). The interval C,(2*) has a fixed length of 2Q;_,(R,Z5) for all
inputs x*.

Quantile Regression A DNN can also be trained to directly output prediction
intervals of input-dependent length, utilizing the quantile regression approach
[37, 21, 38]. This entails estimating the conditional quantile function ¢*(z) =
infly € R : Fyx(ylr) > a}, where Fy|x is the conditional cumulative
distribution function. Specifically, a DNN is trained to output estimates of the
lower and upper quantlles g (x), ¢*(z) at ago = /2 and ayp = 1 — /2.
Given a new input z*, a prediction interval C,, (z*) can then be directly formed,

Cala™) = g5 (z¥), g5 (™). 3)

The estimated quantiles gy (z*), g, (z*) can be output by a single DNN fj,
trained using the pinball loss [39]. A prediction ¢(z*) can also be extracted as
the center point of C, (x*).

Probabilistic Regression Another approach is to explicitly model the con-
ditional distribution p(y|x), for example using a Gaussian model py(y|z) =
N (y; po(x), 03(x)) [40, 41]. A single DNN fy can be trained to output both
the mean fi9(x) and variance o3(z) by mmlmlzmg the corresponding nega-
tive log-likelihood. For a given input z*, a prediction interval can then be
constructed as,

Ca(2*)=[po(a") — (") (1 — 0/2), pg(a”) + 0p(x") @' (1 — a/2)],

“4)
where ® is the CDF of the standard normal distribution. The mean pg(z*) is
also taken as a prediction g.

Epistemic Uncertainty From the Bayesian perspective, quantile regression
and Gaussian models capture aleatoric (inherent data noise) but not epistemic
uncertainty, which accounts for uncertainty in the model parameters [18, 19].
This can be estimated in a principled manner via Bayesian inference, and var-
ious approximate methods have been explored [42, 43, 17, 44]. In practice, it
has been shown difficult to beat the simple approach of ensembling [20, 27],

which entails training M models { fp, }}£, and combining their predictions. For
Gaussian models, a single mean /i and variance 62 can be computed as,

~ el 2= (e~ ) 4o ).
- - (5)

and then plugged into (4) to construct a prediction interval Cy, (z*) for a given
input z*.

Q>
no
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2.2 Selective Prediction

The framework of selective prediction has been applied both to classification
[45, 29] and regression problems [46]. The general idea is to give a model
the option to abstain from outputting predictions for some inputs. This is
achieved by combining the prediction model fy with an uncertainty function
kf : X — R. Given an input z*, the prediction fy(z*) is output if the un-
certainty s ¢(2*) < 7 (for some user-specified threshold 7), otherwise x* is
rejected and no prediction is made. The prediction rate is the proportion of
inputs for which a prediction is output,

N
Predition Rate = % Z Hrp(zy) <7} (6)
i=1
In principle, if high uncertainty x ¢ (2*) corresponds to a large prediction error
ly* — y(x*)| and vice versa, small errors will be achieved for all predictions
which are actually output by the model. Specifically in this work, we combine
selective prediction with the regression methods from Section 2.1. A predic-
tion interval C,,(z*) and predicted target y(x*) are thus output if and only if
(iff) K ¢(2*) < 7. Our aim is for this to improve the calibration (interval cov-
erage closer to 1 — «) of the output prediction intervals.

For the uncertainty function « ¢(x), the variance 62(z) of a Gaussian ensemble
(5) could be used, for example. One could also use some of the various uncer-
tainty scores employed in the rich OOD detection literature [30]. In OOD
detection, the task is to distinguish in-distribution inputs z, inputs which are
similar to those of the train set {(z;,;)}X.,, from out-of-distribution inputs.
A principled approach to OOD detection would be to fit a model of p(z) on
the train set. Inputs = for which p(x) is small are then deemed OOD [47]. In
our considered case where inputs = are images, modelling p(x) can however be
quite challenging. To mitigate this, a feature extractor g : X — R+ can be uti-
lized, modelling p(z) indirectly by fitting a simple model to the feature vectors
g(x). In the classification setting, [31] fit a Gaussian mixture model (GMM)
to the feature vectors {g(w;)}Y; of the train set. Given an input *, it is then
deemed OOD if the GMM density GMM (g(z*)) is small. [32] apply this ap-
proach also to regression problems. Instead of fitting a GMM to the feature
vectors and evaluating its density, [33, 34] compute the distance kKNN (g(x*))
between g(z*) and its k nearest neighbors in the train set {g(z;)}X,. The
input z* is then deemed OOD if this kNN distance is large.
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3 Proposed Benchmark

We propose an extensive benchmark for testing the reliability of regression un-
certainty estimation methods under real-world distribution shifts. The bench-
mark consists of 8 publicly available image-based regression datasets, which
are described in detail in Section 3.1. Our complete evaluation procedure, eval-
uating uncertainty estimation methods mainly in terms of prediction interval
coverage, is then described in Section 3.2.

3.1 Datasets

In an attempt to create a standard benchmark for image-based regression under
distribution shifts, we collect and modify 8 datasets from the literature. Two of
them contain synthetic images while the remaining six are real-world datasets,
four of which are taken from medical applications. Examples from each of the
8 datasets are shown in Figure 1. We create two additional variants of each
of the synthetic datasets, thus resulting in 12 datasets in total. They are all
relatively large-scale (6 592 - 20614 train images) and contain input images
x of size 64 x 64 along with 1D regression targets y. Descriptions of all 12
datasets are given below (further details are also provided in Appendix A),
starting with the two synthetic datasets and their variants.

Cells Given a synthetic fluorescence microscopy image x, the task is to predict
the number of cells y in the image. We utilize the Cell-200 dataset from [48,
49], consisting of 200 000 grayscale images of size 64 x 64. We randomly draw
10 000 train images, 2 000 val images and 10 000 test images. Thus, there is no
distribution shift between train/val and test. We therefore use this as a baseline
dataset.

Cells-Tails A variant of Cells with a clear distribution shift between train/val
and test. For train/val, the regression targets y are limited to |50, 150]. For test,
the targets instead lie in the original range [1, 200].

Cells-Gap Another variant of Cells with a clear distribution shift between
train/val and test. For train/val, the regression targets y are limited to
[1,50[U]150, 200]. For test, the targets instead lie in the original 1, 200].

ChairAngle Given a synthetic image x of a chair, the task is to predict the
yaw angle y of the chair. We utilize the RC-49 dataset [48, 49], which contains
64 x 64 images of different chair models rendered at yaw angles ranging from
0.1° to 89.9°. We randomly split their training set and obtain 17640 train
images and 4 410 val images. By sub-sampling their test set we also get 11 225
test images. There is no clear distribution shift between train/val and test, and
we therefore use this as a second baseline dataset.
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ChairAngle-Tails A variant of ChairAngle with a clear distribution shift be-
tween train/val and test. For train/val, we limit the regression targets y to
|15, 75[. For test, the targets instead lie in the original ]0, 90].

ChairAngle-Gap Another variant of ChairAngle with a clear distribution shift.
For train/val, the regression targets y are limited to |0, 30[U]60, 90]. For test,
the targets instead lie in the original |0, 90].

AssetWealth Given a satellite image x, the task is to predict the asset wealth in-
dex y of the region. We utilize the PovertyMap-Wilds dataset from [16], which
is a variant of the dataset collected by [50]. We use the training, validation-ID
and test-OOD subsets of the data, giving us 9 797 train images, 1 000 val im-
ages and 3 963 test images. We resize the images from size 224 x 224 to 64 x 64.
Train/val and test contain satellite images from disjoint sets of African coun-
tries, creating a distribution shift.

VentricularVolume Given an echocardiogram image x of a human heart, the
task is to predict the volume y of the left ventricle. We utilize the EchoNet-
Dynamic dataset [S1], which contains 10 030 echocardiogram videos. Each
video captures a complete cardiac cycle and is labeled with the left ventricular
volume at two separate time points, representing end-systole (at the end of
contraction) and end-diastole (just before contraction). For each video, we
extract just one of these volume measurements along with the corresponding
video frame. To create a clear distribution shift between train/val and test, we
select the end systolic volume (smaller volume) for train and val, but the end
diastolic volume (larger volume) for test. We utilize the provided dataset splits,
giving us 7 460 train images, 1 288 val images and 1 276 test images.

BrainTumourPixels Given an image slice « of a brain MRI scan, the task is to
predict the number of pixels y in the image which are labeled as brain tumour.
We utilize the brain tumour dataset of the medical segmentation decathlon [52,
53], which is a subset of the data used in the 2016 and 2017 BraTS challenges
[54, 55, 56]. The dataset contains 484 brain MRI scans with corresponding
tumour segmentation masks. We split these scans 80%/20%/20% into train, val
and test sets. The scans are 3D volumes of size 240 x 240 x 155. We convert
each scan into 155 image slices of size 240 x 240, and create a regression target
for each image by counting the number of labeled brain tumour pixels. This
gives us 20 614 train images, 6 116 val images and 6 252 test images.

SkinLesionPixels Given a dermatoscopic image = of a pigmented skin le-
sion, the task is to predict the number of pixels y in the image which are la-
beled as lesion. We utilize the HAM10000 dataset by [57], which contains
10015 dermatoscopic images with corresponding skin lesion segmentation
masks. HAM10000 consists of four different sub-datasets, three of which
were collected in Austria, while the fourth sub-dataset was collected in Aus-
tralia. To create a clear distribution shift between train/val and test, we use the
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Australian sub-dataset as our test set. After randomly splitting the remaining
images 85%/15% into train and val sets, we obtain 6 592 train images, 1 164
val images and 2 259 test images.

HistologyNucleiPixels Given an H&E stained histology image x, the task is
to predict the number of pixels y in the image which are labeled as nuclei. We
utilize the CoNSeP dataset by [58], along with the pre-processed versions they
provide of the Kumar [59] and TNBC [60] datasets. The datasets contain large
H&E stained image tiles, with corresponding nuclear segmentation masks. The
three datasets were collected at different hospitals/institutions, with differing
procedures for specimen preservation and staining. By using CoNSeP and
Kumar for train/val and TNBC for test, we thus obtain a clear distribution shift.
From the large image tiles, we extract 64 x 64 patches via regular gridding,
and create a regression target for each image patch by counting the number
of labeled nuclei pixels. In the end, we obtain 10 808 train images, 2 702 val
images and 2 267 test images.

AerialBuildingPixels Given an aerial image x, the task is to predict the num-
ber of pixels y in the image which are labeled as building. We utilize the Inria
aerial image labeling dataset [61], which contains 180 large aerial images with
corresponding building segmentation masks. The images are captured at five
different geographical locations. We use the images from two densely popu-
lated American cities for train/val, and the images from a more rural European
area for test, thus obtaining a clear distribution shift. After preprocessing, we
obtain 11 184 train images, 2 797 val images and 3 890 test images.

Constructing these custom datasets is one of our main contributions. This is
what enables us to propose an extensive benchmark of large-scale yet conve-
nient datasets (which are all publicly available), containing different types of
challenging distribution shifts, specifically for image-based regression.

3.2 Evaluation

We propose to evaluate regression uncertainty estimation methods mainly in
terms of prediction interval coverage (1): if a method outputs a prediction
y(x) and a 90% prediction interval C ; (x) for each input x, does the method
actually achieve 90% coverage on the test set? I.e., are the prediction intervals
calibrated?

Motivation Regression uncertainty estimation methods can be evaluated us-
ing various approaches. One alternative is sparsification [62], measuring how
well the uncertainty can be used to sort predictions from worst to best. Per-
fect sparsification can however be achieved even if the absolute scale of the
uncertainty is consistently underestimated. Therefore, a lot of previous work
has instead evaluated methods in terms of calibration [22, 23]. Specifically
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for regression, a common form of calibration is based on quantiles [63, 64,
65]. Essentially, a model is there said to be calibrated if the interval cover-
age (1) equals 1 — « for a/l miscoverage rates o €]0, 1[. This is measured by
the expected calibration error, ECE = 1 Py !Coverage(Caj) — (1 —aj),
a; ~ U(0,1). Our proposed evaluation metric is thus a special case of this ap-
proach, considering just one specific miscoverage rate « = 0.1. We argue that
this results in a simpler and more interpretable metric, which also is motivated
by how prediction intervals actually are used in real-world applications. There,
one particular value of « is selected (& = 0.1 is a common choice), and the
corresponding intervals C', are then expected to achieve a coverage of 1 —a on
unseen test data. Recent alternative calibration metrics directly measure how
well the uncertainty aligns with the prediction errors [66, 67]. While these en-
able relative comparisons of different methods, they are not easily interpretable
in terms of absolute performance.

Implementation Details For each dataset and method, we first train a DNN
on the train set Dy,in. Then, we run the method on the val set Dy,, resulting
in a prediction interval Cy () = [Lo(x), Uq(x)] for each input = (o = 0.1).
Importantly, we then calibrate these prediction intervals on val using the pro-
cedure in [21]. This gives calibrated prediction intervals C‘a(x), for which

the interval coverage on val exactly equals 1 — «. Specifically, C,(x) is con-
structed from the original interval C, (x) = [Lo(2), Uq(x)],

Ca(x> = [La(x) - Ql—a(E7Dval)7 Ua(x> + Ql—a(Ev,Dval)], (7)

where E = {max(La(x;) — i, ¥i — Ua(2;)) 11 € Dya } are conformity scores
computed on Dy, and Q1o (E, Dya ) is the (1 — «)-th quantile of these scores.
Finally, we then run the method on the test set D, Outputting a calibrated
prediction interval C,, (2*) for each input 2*. Ideally, the interval coverage of

Ca(x*) does not change from val to test, i.e. Coverage(C,,) = 1 —a should be
true also on test. If Coverage(C,,) # 1—a, a conservative method (> 1 —«) is
preferred compared to an overconfident method (< 1 — o). For methods based
on selective prediction (Section 2.2), the only difference is that prediction in-
tervals C,,(x*) are output only for some test inputs z* (iff x #(z*) < 7). The
interval coverage is thus computed only on this subset of test. This is similar
to the notion of “selective calibration” discussed for the classification setting
by [68]. We set o« = 0.1 since this is a commonly used miscoverage rate in

practice.

Secondary Metrics We also evaluate methods in terms of mean absolute er-
ror (MAE) and average interval length on the va/ set. This measures the qual-
ity of the prediction y(x) and the prediction interval C, (x), respectively [22].
The average interval length is a natural secondary metric, since a method that
achieves a coverage close to 1 — « but outputs extremely large intervals for
all inputs x, not would be particularly useful in practice. Moreover, if two dif-
ferent methods both are perfectly calibrated, i.e. Coverage(C,) = 1 — «, the
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method producing smaller prediction intervals would be preferred. For meth-
ods based on selective prediction (which output predictions only for certain
inputs x), the proportion of inputs for which a prediction actually is output is
another natural secondary metric. For these methods, we thus also evaluate in
terms of the prediction rate (6) on test. If a coverage close to 1 — « is achieved
with a very low prediction rate, the method might still not be practically useful
in certain applications. For two perfectly calibrated methods, one with a higher
prediction rate would be preferred.

4 Evaluated Methods

We evaluate five common regression uncertainty estimation methods from Sec-
tion 2.1, which all output a prediction interval C,(x) and a predicted target
y(x) € Cy(x) for each input x. Two of these we also combine with selective
prediction (Section 2.2), utilizing four different uncertainty functions ¢ (z).
In total, we evaluate 10 different methods. For all methods, we train models
based on a ResNet34 [69] backbone DNN. This architecture is chosen because
of its simplicity and widespread use. The ResNet takes an image x as input
and outputs a feature vector g(x) € R°'2. Below we specify and provide im-
plementation details for each of the 10 evaluated methods, while we refer back
to Section 2 for more general descriptions.

Conformal Prediction We create a standard direct regression model by feed-
ing the ResNet feature vector g(x) into a network head of two fully-connected
layers, outputting a scalar prediction fp(x). The model is trained using the L2
loss. We then utilize conformal prediction to create prediction intervals C, ()
according to (2). Instead of splitting the train images into Z; and Z, we use
the val images as the calibration set Zs.

Ensemble We train an ensemble {fy,,..., fs,,} of M = 5 direct regres-

sion models and compute the ensemble mean fi(z) = 77 Zf\i 1 fo.(x) and

ensemble variance 6%(z) = +; vail (A(z) — fo, (:L’))2 By inserting these

into equation 4, prediction intervals C,, (z) of input-dependent length are then
constructed.

Gaussian We create a Gaussian model py(y|z) = N (y; po(x), o (x)) by
feeding the ResNet feature vector g(z) into two separate network heads of
two fully-connected layers. These output the mean p4(z) and variance o3 (),
respectively. Prediction intervals C,, () are then constructed according to (4).

Gaussian Ensemble We train an ensemble of M = 5 Gaussian models, com-
pute a single mean fi(x) and variance 62(x) according to (5), and plug these
into (4) to construct prediction intervals Cy ().
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Quantile Regression We create a quantile regression model by feeding the
ResNet feature vector g(z) into two separate network heads. These output the
quantiles q‘é“”(x), qg“”(:p), directly forming prediction intervals Cy, (x) accord-
ing to (3). The model is trained by minimizing the average pinball loss of
gy (x) and gy ().

Gaussian + Selective GMM We combine the Gaussian method with a se-
lective prediction mechanism. After training a Gaussian model, we run it on
each image in train to extract ResNet feature vectors {g(x;)} ;. We then uti-
lize scikit-learn [70] to fit a GMM (4 components, full covariance) to these
train feature vectors. To compute an uncertainty score « ¢(x) for a given input
x, we extract g(z) and evaluate its likelihood according to the fitted GMM,
rf(z) = ~GMM(g(x)). The prediction 119(x) and corresponding prediction
interval C, () of the Gaussian model are then output iff ks () < 7. To set the
user-specified threshold 7, we compute x ¢ () on all images in val and pick the
95% quantile. This choice of 7 is motivated by the commonly reported FPR95
OOD detection metric, but 7 could be set using other approaches.

Gaussian + Selective KNN Identical to Gaussian + Selective GMM, but
rf(z) = kKNN(g(z)). Specifically, the uncertainty score rs(z) is computed
by extracting g(z) and computing the average distance to its & = 10 nearest
neighbors among the train feature vectors {g(z;)}},. Following [34], we uti-
lize the Annoy' approximate neighbors library, with cosine similarity as the
distance metric.

Gaussian + Selective Variance Identical to Gaussian + Selective GMM, but
rs(z) = o3 (x) (the variance of the Gaussian model). This is used as a simple
baseline for the two previous methods.

Gaussian Ensemble + Selective GMM We combine Gaussian Ensemble with
a selective prediction mechanism. After training an ensemble of M = 5
Gaussian models, we run each model on each image in train to extract M
sets of ResNet feature vectors. For each model, we then fit a GMM to its
set of train feature vectors. l.e., we fit M different GMMs. To compute
an uncertainty score x () for a given input x, we extract a feature vector
and evaluate its likelihood according to the corresponding GMM, for each
of the M models. Finally, we compute the mean of the GMM likelihoods,

M
Ky(r) = ﬁ > iz —GMM; (g,(a:))
Gaussian Ensemble + Selective Ensemble Variance Identical to Gaussian

Ensemble + Selective GMM, but ¢ (z) = - Zf\il (f(z) — po, (:):))2, where

i(z) = & Zf\i 1 1o, (z). Hence, the variance of the ensemble means is used

as the uncertainty score. This constitutes a simple baseline for the previous
method.

'lhttps://github.com/spotify/annoy
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All models are trained for 75 epochs using the ADAM optimizer [71]. The
same hyperparameters are used for all datasets, and neither the training proce-
dure nor the models are specifically tuned for any particular dataset. All experi-
ments are implemented using PyTorch [72], and our complete implementation
is made publicly available. All models were trained on individual NVIDIA
TITAN Xp GPUs. On one such GPU, training 20 models on one dataset took
approximately 24 hours. We chose to train all models based on a ResNet34
backbone because it is widely used across various applications, yet simple to
implement and quite computationally inexpensive. The proposed benchmark
and the evaluated uncertainty estimation methods are however entirely inde-
pendent of this specific choice of DNN backbone architecture. Exploring the
use of other more powerful models and evaluating how this affects the relia-
bility of uncertainty estimation methods is an interesting direction which we
leave for future work.

5 Related Work

Out-of-distribution robustness of DNNs is an active area of research [15, 73,
26,74,75,76,77,78]. All these previous works do however focus exclusively
on classification tasks. Moreover, they consider no uncertainty measures but
instead evaluate only in terms of accuracy. While [79, 80] evaluate uncertainty
calibration, they also just consider the classification setting. In contrast, eval-
uation of uncertainty estimation methods is our main focus, and we do this
specifically for regression.

The main sources of inspiration for our work are [16] and [27]. While [16]
propose an extensive benchmark with various real-world distribution shifts, it
only contains a single regression dataset. Moreover, methods are evaluated
solely in terms of predictive performance. [27] perform a comprehensive eval-
uation of uncertainty estimation methods under distribution shifts, but only
consider classification tasks. Inspired by this, we thus propose our benchmark
for evaluating reliability of uncertainty estimation methods under real-world
distribution shifts in the regression setting. Most similar to our work is that of
[81]. However, their benchmark contains just two regression datasets (tabular
weather prediction and a complex vehicle motion prediction task), they only
evaluate ensemble-based uncertainty estimation methods, and these methods
are not evaluated in terms of calibration.
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6 Results

We evaluate the 10 methods specified in Section 4 on all 12 datasets from
Section 3.1, according to the evaluation procedure described in Section 3.2.
For each method we train 20 models, randomly select 5 of them for evaluation
and report the averaged metrics. For the ensemble methods, we construct an
ensemble by randomly selecting M = 5 out of the 20 trained models, evaluate
the ensemble and then repeat this 5 times in total. To ensure that the results do
not depend on our specific choice of & = 0.1, we also evaluate methods with
two alternative miscoverage rates. While the main paper only contains results
for « = 0.1, we repeat most of the evaluation for « = 0.2 and o = 0.05 in
Appendix B, observing very similar trends overall.

6.1 Common Uncertainty Estimation Methods

We start by evaluating the first five methods from Section 4, those which output
predictions and corresponding 90% prediction intervals for all inputs. The re-
sults in terms of our main metric test coverage are presented in the upper part
of Figure 2 for the synthetic datasets, and in Figure 3 for the six real-world
datasets. In the lower parts of Figure 2 & 3, results in terms of average val
interval length are presented. The complete results, including our other sec-
ondary metric val MAE, are provided in Table A1 - Table A12 in the appendix.
Please note that, because we utilize a new benchmark consisting of custom
datasets, we are not able to directly compare the MAE of our models with that
of any previous work from the literature.

In Figure 2, the test coverage results on the first synthetic dataset Cells are
found in the upper-left. As there is no distribution shift between train/val and
test for this dataset, we use it as a baseline. We observe that all five methods
have almost perfectly calibrated prediction intervals, i.e. they all obtain a test
coverage very close to 90%. This is exactly the desired behaviour. On Cells-
Tails however, on which we introduced a clear distribution shift, we observe
in Figure 2 that the test coverage drops dramatically from the desired 90%
for all five methods. Even the state-of-the-art uncertainty estimation method
Gaussian Ensemble here becomes highly overconfident, as its test coverage
drops down to ~ 59%. On Cells-Gap, the test coverages are slightly closer to
90%, but all five methods are still highly overconfident. On the other synthetic
dataset ChairAngle, we observe in Figure 2 that all five methods have almost
perfectly calibrated prediction intervals. However, as we introduce clear dis-
tribution shifts on ChairAngle-Tails and ChairAngle-Gap, we can observe that
the test coverage once again drops dramatically for all methods.

The results on the six real-world datasets are found in Figure 3. In the up-
per part, we observe that all five methods have quite well-calibrated prediction
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Figure 2: Results for the five common regression uncertainty estimation methods
(which output predictions and corresponding 90% prediction intervals for all inputs),
on the six synthetic datasets. Top: Results in terms of our main metric test coverage. A
perfectly calibrated method would achieve a test coverage of exactly 90%, as indicated
by the solid line. Bottom: Results in terms of average val interval length.

intervals on AssetWealth and BrainTumourPixels, even though they all are con-
sistently somewhat overconfident (test coverages of 82%-89%). On the four
remaining datasets, the methods are in general more significantly overconfi-
dent. On VentricularVolume, we observe test coverages of 60%-80% for all
methods, and on SkinLesionPixels the very best coverage is ~ 82%. On His-
tologyNucleiPixels, most methods only obtain test coverages of 55%-70%, and
on AerialBuildingPixels the very best coverage is ~ 81%. In fact, not a single
method actually reaches the desired 90% test coverage on any of these real-
world datasets.

In terms of average val interval length, we observe in the lower parts of Fig-
ure 2 & 3 that Ensemble consistently produces smaller prediction intervals than
Conformal Prediction. Moreover, the intervals of Gaussian Ensemble are usu-
ally smaller than those of Gaussian. When comparing the interval lengths of
Quantile Regression and Gaussian, we observe no clear trend that is consistent
across all datasets. Since the average interval lengths vary a lot between dif-
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Figure 3: Results for the five common regression uncertainty estimation methods
(which output predictions and corresponding 90% prediction intervals for all inputs),
on the six real-world datasets. Top: Results in terms of our main metric test coverage.
Bottom: Results in terms of average val interval length.

ferent datasets, Figure 2 & 3 only show relative comparisons of the methods.
For absolute numerical scales, see Table A1 - Table A12.

To further study how the test coverage performance is affected by distribution
shifts, we also apply the five methods to three additional variants of the Cells
dataset. Cells has no difference in regression target range between train/val
and test, whereas for Cells-Tails the target range is |50, 150] for train/val and
[1,200] for test. By creating three variants with intermediate target ranges, we
thus obtain a sequence of five datasets with increasing degrees of distribution
shifts, starting with Cells (no distribution shift) and ending with Cells-Tails
(maximum distribution shift). The test coverage results on this sequence of
datasets are presented in the upper part of Figure 4. We observe that as the
degree of distribution shift is increased step-by-step, the test coverage also
drops accordingly. The lower part of Figure 4 presents the results of a sim-
ilar experiment, in which we construct a sequence of five datasets starting
with ChairAngle (no distribution shift) and ending with ChairAngle-Gap (max-
imum distribution shift). Also in this case, we observe that the test coverage
drops step-by-step along with the increased degree of distribution shift.
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Figure 4: Test coverage results for the five common regression uncertainty estimation
methods, on synthetic datasets with increasing degrees of distribution shifts. Top:
From Cells (no distribution shift) to Cells-Tails (maximum distribution shift). Bottom:
From ChairAngle to ChairAngle-Gap.

A study of the relative performance of the five methods on the real-world
datasets, in terms of all three metrics (test coverage, average val interval length,
val MAE), is finally presented in Figure A1l - Figure A3 in the appendix. One
can clearly observe that Ensemble and Gaussian Ensemble achieve the best
performance, thus indicating that ensembling multiple models indeed helps to
improve the performance.

6.2 Selective Prediction Methods

Next, we evaluate the methods with an added selective prediction mechanism.
We start with the three methods based on Gaussian. The results in terms of
test coverage and test prediction rate are available in Figure 5 for the synthetic
datasets, and in Figure 6 for the six real-world datasets. While a complete
evaluation of these methods also should include the average val interval length,
we note that the selective prediction mechanism does not modify the intervals
of the underlying Gaussian method (which already has been evaluated in terms
of interval length in Section 6.1). Here, we therefore focus on the test coverage
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Figure 5: Results for the three selective prediction methods based on Gaussian, on
the six synthetic datasets. Top: Results in terms of our main metric test coverage.
Bottom: Results in terms of test prediction rate (the proportion of test inputs for which
a prediction actually is output).

and test prediction rate. Complete numerical results are provided in Table Al
- Table A12 in the appendix.

In the upper part of Figure 5, we observe that selective prediction based on
feature-space density significantly improves the test coverage of Gaussian on
the synthetic datasets. While Gaussian has well-calibrated prediction intervals
only on Cells and ChairAngle, which are baseline datasets without any distri-
bution shift, Gaussian + Selective GMM is almost perfectly calibrated across
all six datasets. On Cells-Tails, for example, it improves the test coverage
from ~ 54% up to =~ 89%. Gaussian + Selective kNN also significantly im-
proves the test coverages, but not quite to the same extent. In the lower part of
Figure 5, we can observe that when Gaussian + Selective GMM significantly
improves the test coverage, there is also a clear drop in its test prediction rate.
For example, the prediction rate drops from = 0.95 on Cells down to ~ 0.54
on Cells-Tails. By rejecting nearly 50% of all inputs as OOD in this case, Gaus-
sian + Selective GMM can thus remain well-calibrated on the subset of test it
actually outputs predictions for. In Figure 5, we also observe that Gaussian +
Selective Variance only marginally improves the test coverage.
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Figure 6: Results for the three selective prediction methods based on Gaussian, on
the six real-world datasets. Top: Results in terms of test coverage. Bottom: Results
in terms of test prediction rate.

While Gaussian + Selective GMM significantly improves the test coverage
of Gaussian and has well-calibrated prediction intervals across the synthetic
datasets, we observe in Figure 6 that this is not true for the six real-world
datasets. Gaussian + Selective GMM does consistently improve the test cov-
erage, but only marginally, and it still suffers from significant overconfidence
in many cases. On VentricularVolume, for example, the test prediction rate of
Gaussian + Selective GMM is as low as =~ 0.71, but the test coverage only
improves from ~ 73% to ~ 75% compared to Gaussian.

For the two methods based on Gaussian Ensemble, the results are presented
in Figure A4 & A5 in the appendix. Overall, we observe very similar trends.
Gaussian Ensemble + Selective GMM significantly improves the test coverage
of Gaussian Ensemble and is almost perfectly calibrated across the synthetic
datasets. However, when it comes to the real-world datasets, it often remains
significantly overconfident.

Finally, Figure A6 presents a relative comparison of the five selective predic-
tion methods across all 12 datasets, in terms of average test coverage error
(absolute difference between empirical and expected interval coverage) and
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average test prediction rate. We observe that Gaussian Ensemble + Selective
GMM achieves the best test coverage error, but also has the lowest test pre-
diction rate. In fact, each improvement in terms of test coverage error also
corresponds to a decrease in test prediction rate for these five methods, mean-
ing that there seems to be an inherent trade-off between the two metrics.

7 Discussion

Let us now analyze the results from Section 6 in more detail, and discuss what
we consider the most important findings and insights. First of all, we can ob-
serve that among the 10 considered methods, not a single one was close to
producing perfectly calibrated prediction intervals across all 12 datasets. We
thus conclude that our proposed benchmark indeed is challenging and interest-
ing. Moreover, the results in Figure 2 & 3 demonstrate that while common
uncertainty estimation methods are well calibrated when there is no distribu-
tion shift (Cells and ChairAngle), they can all break down and become highly
overconfident in many realistic scenarios. This highlights the importance of
employing sufficiently realistic and thus challenging benchmarks when evalu-
ating uncertainty estimation methods. Otherwise, we might be lead to believe
that methods will be more reliable during practical deployment than they actu-
ally are.

Coverage Guarantees Might Instill a False Sense of Security We also want
to emphasize that Conformal Prediction and Quantile Regression® have theo-
retical coverage guarantees, but still are observed to become highly overcon-
fident for many datasets in Figure 2 & 3. Since the guarantees depend on the
assumption that all data points are exchangeable (true for i.i.d. data, for in-
stance), which generally does not hold under distribution shifts, these results
should actually not be surprising. The results are however a good reminder
that we always need to be aware of the underlying assumptions, and whether
or not they are likely to hold in common practical applications. Otherwise,
such theoretical guarantees might just instill a false sense of security, making
us trust methods more than we actually should.

Clear Performance Differences between Synthetic and Real-World Data
We find it interesting that selective prediction based on feature-space density,
in particular Gaussian + Selective GMM, works almost perfectly in terms of
test coverage across the synthetic datasets (Figure 5), but fails to give signifi-
cant improvements on the real-world datasets (Figure 6). The results on Ven-
tricularVolume are particularly interesting, as the prediction rate drops quite a
lot without significantly improving the test coverage. This means that while a

2Since all prediction intervals are calibrated on val, we are using Conformalized Quantile Re-
gression [21].
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relatively large proportion of the test inputs are deemed OOD and thus rejected
by the method, the test coverage is barely improved. On the synthetic datasets,
there is a corresponding improvement in test coverage whenever the prediction
rate drops significantly (Figure 5). It is not clear why such an obvious perfor-
mance difference between synthetic and real-world datasets is observed. One
possible explanation is that real-world data requires better models for p(x),
i.e. that the relatively simple approaches based on feature-space density not
are sufficient. Properly explaining this performance difference is an important
problem, but we will here leave this as an interesting direction for future work.

OOD Uncertainty Scores Perform Well, but Not Well Enough Compar-
ing the selective prediction methods, we observe that Gaussian + Selective
GMM consistently outperforms Gaussian + Selective Variance (Figure 5 & 6)
and that Gaussian Ensemble + Selective GMM outperforms Gaussian Ensem-
ble + Selective Ensemble Variance in most cases (Figure A4 & AS). Relative
to common uncertainty estimation baselines, methods based on feature-space
density thus achieve very strong performance. This is in line with the state-of-
the-art OOD detection performance that has been demonstrated recently. In
our results, we can however clearly observe that while feature-space methods
perform well relative to common baselines, the resulting selective prediction
methods are still overconfident in many cases — the absolute performance is
still far from perfect. Using our benchmark, we are thus able to not only com-
pare the relative performance of different OOD uncertainty scores, but also
evaluate their performance in an absolute sense.

Performance Differences among Real-World Datasets are Mostly Logical
When we compare the performance on the different real-world datasets in Fig-
ure 3, all methods are relatively well-calibrated on BrainTumourPixels and
AssetWealth. For BrainTumourPixels, the train, val and test splits were cre-
ated by randomly splitting the original set of MRI scans. The distribution shift
between train/val and test is thus also fairly limited. For AssetWealth (satel-
lite images from different African countries), the shift is likely quite limited
at least compared to AerialBuildingPixels (satellite images from two different
continents). Finally, the results for HistologyNucleiPixels are interesting, as
this is the only dataset where Conformal Prediction clearly obtains the best
test coverage. It is not clear why the methods which output prediction inter-
vals of input-dependent length struggle on this particular dataset.

Finally, we should emphasize that while test coverage is our main metric, this
by itself is not sufficient for a method to be said to “perform well” in a general
sense. For example, a perfectly calibrated method with a low test prediction
rate might not be particularly useful in practice. While even very low test
prediction rates likely would be tolerated in many medical applications and
other safety-critical domains (as long as the method stays perfectly calibrated),
one can imagine more low-risk settings where this calibration versus prediction
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rate trade-off is a lot less clear. Since not a single one of the evaluated methods
was close to being perfectly calibrated across all 12 datasets, we did however
mainly focus on analyzing the test coverage in this paper. If multiple methods
had performed well in terms of test coverage, a more detailed analysis and
discussion of the secondary metrics performance would have been necessary.

The main actionable takeaways from our work can be summarized as:

» All methods are well calibrated on baseline datasets with no distribu-
tion shift, but become highly overconfident in many realistic scenarios.
Uncertainty estimation methods must therefore be evaluated using suf-
ficiently challenging benchmarks. Otherwise, one might be lead to be-
lieve that methods will be more reliable during real-world deployment
than they actually are.

Conformal prediction methods have commonly promoted theoretical
coverage guarantees, but these depend on an assumption that is unlikely
to hold in many practical applications. Consequently, also these methods
can become highly overconfident in realistic scenarios. If the underlying
assumptions are not examined critically by practitioners, such theoretical
guarantees risk instilling a false sense of security — making these models
even less suitable for safety-critical deployment.

The clear performance difference between synthetic and real-world
datasets observed for selective prediction methods based on feature-
space density is a very interesting direction for future work. Ifthe reasons
for this performance gap can be understood, an uncertainty estimation
method that stays well calibrated across all datasets could potentially be
developed.

Selective prediction methods based on feature-space density perform
well relative to other methods (as expected based on their state-of-the-art
OOD detection performance), but are also overconfident in many cases.
Only comparing the relative performance of different methods is there-
fore not sufficient. To track if actual progress is being made towards
the ultimate goal of truly reliable uncertainty estimation methods, bench-
marks must also evaluate method performance in an absolute sense.

& Conclusion

We proposed an extensive benchmark for testing the reliability of regression un-
certainty estimation methods under real-world distribution shifts. The bench-
mark consists of 8 publicly available image-based regression datasets with dif-
ferent types of challenging distribution shifts. We employed our benchmark to
evaluate many of the most common uncertainty estimation methods, as well
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as two state-of-the-art uncertainty scores from OOD detection. We found that
while all methods are well calibrated when there is no distribution shift, they be-
come highly overconfident on many of the benchmark datasets. Methods based
on the OOD uncertainty scores performed well relative to other methods, but
the absolute performance is still far from perfect. This uncovers important lim-
itations of current regression uncertainty estimation methods. Our work thus
serves as a challenge to the research community, to develop methods which ac-
tually produce calibrated prediction intervals across all benchmark datasets. To
that end, future directions include exploring the use of more sophisticated mod-
els for p(x) within selective prediction —hopefully closing the performance gap
between synthetic and real-world datasets — and employing alternative DNN
backbone architectures. We hope that our benchmark will spur more work on
how to develop truly reliable regression uncertainty estimation methods.
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Appendix

A Dataset Details

More detailed descriptions of the 12 datasets from Section 3.1 are provided
below.

Cells Given a synthetic fluorescence microscopy image x, the task is to predict
the number of cells y in the image. We utilize the Cell-200 dataset from [48,
49], consisting of 200 000 grayscale images of size 64 x 64. We randomly draw
10000 train images, 2 000 val images and 10 000 test images. Thus, there is no
distribution shift between train/val and test. We therefore use this as a baseline
dataset.

Cells-Tails We create a variant of Cells with a clear distribution shift between
train/val and test. For the 10 000 train images and 2 000 val images, the regres-
sion targets y are limited to the range |50, 150]. For the 10 000 test images, the
targets instead lie in the full original range [1, 200].

Cells-Gap Another variant of Cells with a clear distribution shift between
train/val and test. For the 10 000 train images and 2 000 val images, the regres-
sion targets y are limited to [1, 50[U]150, 200]. For the 10 000 test images, the
targets instead lie in the full original range [1, 200].

ChairAngle Given a synthetic image « of a rendered chair model, the task is
to predict the yaw angle y of the chair. We utilize the RC-49 dataset from [48,
49], which contains 64 x 64 RGB images of different chair models rendered at
899 yaw angles ranging from 0.1° to 89.9°, with step size 0.1°. We randomly
split their training set and obtain 17 640 train images and 4410 val images.
By sub-sampling their test set we also get 11225 test images. There is no
obvious distribution shift between train/val and test, and we therefore use this
as a second baseline dataset.

ChairAngle-Tails We create a variant of ChairAngle with a clear distribution
shift between train/val and test. For train and val, we limit the regression tar-
gets y to the range |15, 75[. For test, the targets instead lie in the full original
range |0, 90[. We obtain 11 760 train images, 2 940 val images and 11 225 test
images.

ChairAngle-Gap Another variant of ChairAngle with a clear distribution shift
between train/val and test. For the 11 760 train images and 2 940 val images,
the regression targets y are limited to ]0, 30[U]60, 90]. For the 11 225 test im-
ages, the targets instead lie in the full original range |0, 90[.

AssetWealth Given a satellite image x (8 image channels), the task is to pre-
dict the asset wealth index y of the region. We utilize the PovertyMap-Wilds

VII-31




Paper VII — How Reliable is Your Regression Model’s Uncertainty?

dataset [16], which is a variant of the dataset collected by [50]. We use the
training, validation-ID and test-OOD subsets of the data, giving us 9 797 train
images, 1000 val images and 3 963 test images. We resize the images from
size 224 x 224 to 64 x 64. Train/val and test contain satellite images from
disjoint sets of African countries, creating a distribution shift.

VentricularVolume Given an echocardiogram image x of a human heart, the
task is to predict the volume y of the left ventricle. We utilize the EchoNet-
Dynamic dataset by [51], which contains 10 030 echocardiogram videos. Each
video captures a complete cardiac cycle and is labeled with measurements of
the left ventricular volume at two separate time points, representing end-systole
(at the end of contraction - smaller volume) and end-diastole (just before con-
traction - larger volume). For each video, we extract just one of these volume
measurements along with the corresponding video frame. To create a clear
distribution shift between train/val and test, we select the end systolic volume
(smaller volume) for train and val, but the end diastolic volume (larger vol-
ume) for test. We utilize the provided dataset splits, giving us 7460 train im-
ages, 1 288 val images and 1 276 test images. We resize the images from size
112 x 112 to 64 x 64.

BrainTumourPixels Given an image slice x of a brain MRI scan, the task is to
predict the number of pixels y in the image which are labeled as brain tumour.
We utilize the brain tumour dataset of the medical segmentation decathlon [52,
53], which is a subset of the data used in the 2016 and 2017 BraTS challenges
[54, 55, 56]. The dataset contains 484 brain MRI scans with corresponding
tumour segmentation masks. We split these scans 80%/20%/20% into train, val
and test sets. The scans are 3D volumes of size 240 x 240 x 155. We convert
each scan into 155 image slices of size 240 x 240, and create a regression target
for each image by counting the number of labeled brain tumour pixels. We then
also remove all images which contain no tumour pixels. The original image
slices have 4 channels (FLAIR, T1w, Tlgd, T2w), but we only use the first
three and convert the slices into standard RGB images. This gives us 20614
train images, 6 116 val images and 6 252 test images. We also resize the images
from size 240 x 240 to 64 x 64.

SkinLesionPixels Given a dermatoscopic image x of a pigmented skin le-
sion, the task is to predict the number of pixels y in the image which are la-
beled as lesion. We utilize the HAM10000 dataset by [57], which contains
10015 dermatoscopic images with corresponding skin lesion segmentation
masks. HAM10000 consists of four different sub-datasets, three of which
(ViDIR Legacy, ViDIR Current and ViDIR MoleMax) were collected in Aus-
tria, while the fourth sub-dataset (Rosendahl) was collected in Australia. To
create a clear distribution shift between train/val and test, we use the Australian
sub-dataset (Rosendahl) as our test set. After randomly splitting the remaining
images 85%/15% into train and val sets, we obtain 6 592 train images, 1 164
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val images and 2 259 test images. We then create a regression target for each
image by counting the number of labeled skin lesion pixels. We also resize the
images from size 450 x 600 to 64 x 64.

HistologyNucleiPixels Given an H&E stained histology image x, the task
is to predict the number of pixels y in the image which are labeled as nuclei.
We utilize the CoNSeP dataset by [58], along with the pre-processed versions
they provide of the Kumar [59] and TNBC [60] datasets. The datasets contain
large H&E stained image tiles (of size 1000 x 1000 or 512 x 512) at 40x
objective magnification, with corresponding nuclear segmentation masks. The
three datasets were collected at different hospitals/institutions, with differing
procedures for specimen preservation and staining. By using CoNSeP and
Kumar for train/val and TNBC for test, we thus obtain a clear distribution shift.
From the large image tiles, we extract 64 x 64 patches via regular gridding,
and create a regression target for each image patch by counting the number of
labeled nuclei pixels. We then also remove all images which contain no nuclei
pixels. In the end, we obtain 10 808 train images, 2 702 val images and 2 267
test images.

AerialBuildingPixels Given an aerial image z, the task is to predict the num-
ber of pixels y in the image which are labeled as building. We utilize the
Inria aerial image labeling dataset [61], which contains 180 large aerial im-
ages with corresponding building segmentation masks. The images are of size
5000 x 5000, and are captured at five different geographical locations. We use
the images from two densely populated American cities (Austin and Chicago)
for train/val, and the images from a more rural European area (West Tyrol, Aus-
tria) for test, thus obtaining a clear distribution shift. We first resize the images
to size 1 000 x 1 000, and then extract 64 x 64 patches via regular gridding. We
also create a regression target for each image patch by counting the number of
labeled building pixels. After removal of all images which contain no building
pixels, we finally obtain 11 184 train images, 2 797 val images and 3 890 test
images.

The additional variants of Cells and ChairAngle in Figure 4 are specified as
follows. Cells: no difference in regression target range between train/val and
test. Cells-Tails: target range |50, 150] for train/val, [1,200] for test. We cre-
ate three versions with intermediate target ranges (1: [37.5, 163.5], 2: [25, 176],
3: [12.5,188.5]) for test. ChairAngle: no difference in target range between
train/val and test. ChairAngle-Gap: target range |0, 30[U]60, 90] for train/val,
10,90] for test. We create three versions with intermediate target ranges (1:
10, 33.75[U]56.25,90], 2: ]0,37.5[U]52.5,90], 3: ]0,41.25[U]48.75,90]) for
test.
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B Additional Results & Method Variations

Please note that the results in Table Al - Table A42 not are rounded/truncated
to only significant digits.

To ensure that the test coverage results do not depend on our specific choice of
studying 90% prediction intervals (o = 0.1), we repeat most of the evaluation
for two alternative miscoverage rates a.. Specifically, we redo the evaluation
of 6/10 methods on 9/12 datasets with 80% (o = 0.2) and 95% (o = 0.05)
prediction intervals. The results for 80% prediction intervals are given in Fig-
ure A7 - Figure A10 and Table A13 - Table A21, while the results for 95%
prediction intervals are given in Figure A1l - Figure A14 and Table A22 - Ta-
ble A30. We observe very similar trends overall. For example, all methods still
have almost perfectly calibrated prediction intervals on Cells and ChairAngle,
i.e. they all obtain a test coverage very close to 80%/95%, but only Gaussian
+ Selective GMM remains well-calibrated on Cells-Tails and ChairAngle-Gap.
With the exception of BrainTumourPixels, all methods are also significantly
overconfident on all the real-world datasets.

Figure A15 shows test coverage results for the five common regression un-
certainty estimation methods on the Aeria/BuildingPixels dataset, and on two
versions with different test sets. For all three datasets, train/val contains im-
ages from Austin and Chicago. For AerialBuildingPixels, test contains images
from West Tyrol, Austria. For AerialBuildingPixels-Kitsap, test instead con-
tains images from Kitsap County, WA. For AerialBuildingPixels-Vienna, test
contains images from Vienna, Austria. Intuitively, the distribution shift be-
tween train/val and test could potentially be smaller for Aeria/BuildingPixels-
Kitsap and AerialBuildingPixels-Vienna than for the original AerialBuilding-
Pixels, but we observe no clear trends in Figure A15.

Figure A16 & A17 present a study in which we aim to relate the test coverage
performance to a quantitative measure of distribution shift (“distance” between
the distributions of train/val and test), complementing our qualitative discus-
sion in the Performance Differences among Real-World Datasets are Mostly
Logical paragraph of Section 7. How to quantify the level of distribution shift
in real-world datasets is however far from obvious, see e.g. Appendix E.1 in
[82]. We here explore if the difference in regression accuracy (MAE) on val
and test can be adopted as such a measure, extending the approach by [82]
to our regression setting. We compute the average test coverage error for the
five common regression uncertainty estimation methods, whereas the val/test
MAE is for the Conformal Prediction method (standard direct regression mod-
els). The results for the six synthetic datasets are presented in Figure A16, and
for the six real-world datasets in Figure A17. We observe that, in general, a
larger distribution shift measure does indeed seem to correspond to worse test
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coverage performance. Among the 12 datasets, HistologyNucleiPixels is the
only one that quite clearly breaks this general trend.

Apart from the main comparison of the 10 methods specified in Section 4, we
also evaluate a few method variations. The results for these experiments are
provided in Table A31 - Table A42. For Gaussian + Selective GMM, we vary
the number of GMM mixture components from the standard k = 4 to k = 2
and k = 8, but observe no particularly consistent or significant trends in the
results. Similarly, we vary the number of neighbors from the standard k£ = 10
to k = 5 and k = 20 for Gaussian + Selective kNN, but observe no clear
trends here either. For Gaussian + Selective kNN, we also explore replacing
the cosine similarity distance metric with L2 distance, again obtaining very
similar results. Following [83], we finally add spectral normalization [84] for
further feature-space regularization, but observe no significant improvements
for Gaussian + Selective GMM.
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Figure Al: Performance comparison of the five common regression uncertainty esti-
mation methods on the six real-world datasets, in terms of average test coverage error
and average val MAE rank (the five methods are ranked 1 - 5 in terms of val MAE on
each dataset, and then the average rank is computed). Ensemble and Gaussian Ensem-
ble achieve the best performance.
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Figure A2: Performance comparison of the five common regression uncertainty esti-
mation methods on the six real-world datasets, in terms of average test coverage error
and average val interval length rank (the five methods are ranked 1 - 5 in terms of val
interval length on each dataset, and then the average rank is computed). Ensemble and
Gaussian Ensemble achieve the best performance.

Gaussian Ensemble

@ Quantile Regression

5) T
5 ¢
v
£ f
= A
2
3 [
= L N
s 3
[}
g
=
>
> |
B
<
1 ! ! !
1 2 3 4 5
Average val MAE Rank ()
A\ Conformal Prediction Ensemble ‘ Gaussian

Figure A3: Performance comparison of the five common regression uncertainty esti-
mation methods on the six real-world datasets, in terms of average val interval length
rank and average val MAE rank. Ensemble and Gaussian Ensemble achieve the best

performance.

VII-36



. 0o —iEE » 2 = = =
<
=
8 0.8 o =
&)
- 0.7
E 0 &
0.6
0.5
Cells Cells-Tails Cells-Gap ~ ChairAngle  ChairAngle- ChairAngle-
Tails Gap
—_ 1
Ao
o 0.8
&
- 0.6
g
5 04
B
& 0.2
0
Cells Cells-Tails Cells-Gap  ChairAngle  ChairAngle- ChairAngle-
Tails Gap
Gaussian Ensemble I 1 Gaussian Ensemble + Selective GMM

I I Gaussian Ensemble + Selective Ensemble Var
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Figure A6: Performance comparison of the selective prediction methods across all
12 datasets, in terms of average test coverage error and test prediction rate. Gaussian
Ensemble + Selective GMM achieves the best coverage error, but also has the lowest
prediction rate. For these five methods, each improvement in terms of coverage error
also corresponds to a decrease in prediction rate.
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Figure A7: Miscoverage rate « = 0.2: Results in terms of test coverage for four of
the common regression uncertainty estimation methods (Conformal Prediction, Gaus-
sian, Gaussian Ensemble, Quantile Regression), on four of the synthetic datasets. See
Table A13 - Table A16 for other metrics.
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Table A17 - Table A21 for other metrics.
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Figure A9: Miscoverage rate o« =

0.2: Results for two of the selective prediction

methods, on four of the synthetic datasets. See Table A13 - Table A16 for other metrics.
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Figure A10: Miscoverage rate a = 0.2: Results for two of the selective prediction
methods, on five of the real-world datasets. See Table A17 - Table A21 for other
metrics.
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Figure A11: Miscoverage rate a = 0.05: Results in terms of test coverage for four of
the common regression uncertainty estimation methods (Conformal Prediction, Gaus-
sian, Gaussian Ensemble, Quantile Regression), on four of the synthetic datasets. See
Table A22 - Table A25 for other metrics.
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Figure A12: Miscoverage rate & = 0.05: Results in terms of test coverage for four of
the common regression uncertainty estimation methods (Conformal Prediction, Gaus-
sian, Gaussian Ensemble, Quantile Regression), on five of the real-world datasets. See
Table A26 - Table A30 for other metrics.
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Figure A13: Miscoverage rate @ = 0.05: Results for two of the selective prediction
methods, on four of the synthetic datasets. See Table A22 - Table A25 for other metrics.
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Figure A14: Miscoverage rate « = 0.05: Results for two of the selective prediction
methods, on five of the real-world datasets. See Table A26 - Table A30 for other
metrics.
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Figure A15: Results for the five common regression uncertainty estimation meth-
ods (Conformal Prediction, Ensemble, Gaussian, Gaussian Ensemble, Quantile Re-
gression) on the AerialBuildingPixels dataset, and on two versions with different
test sets. For all three datasets, train/val contains images from Austin and Chicago.
For AerialBuildingPixels, test contains images from West Tyrol, Austria. For
AerialBuildingPixels-Kitsap, test instead contains images from Kitsap County, WA.
For AerialBuildingPixels-Vienna, test contains images from Vienna, Austria.
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Figure A16: Using the difference in regression accuracy (MAE) on val and test as a
quantitative measure of distribution shift in each dataset (inspired by [82], extended to
our regression setting), and comparing this to the test coverage performance. Results
for the six synthetic datasets. In general, a larger distribution shift measure corresponds
to worse test coverage performance.
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Figure A17: Exactly the same comparison as in Figure A 16, but for the six real-world
datasets. A larger distribution shift measure generally corresponds to worse test cov-
erage performance also in this case. The HistologyNucleiPixels dataset is somewhat
of an outlier.
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Table Al: Complete results on the Cells dataset.

Method

val MAE ({)

val Interval Length (])

test Coverage (> 0.90)

test Prediction Rate (1)

Conformal Prediction
Ensemble

Gaussian

Gaussian Ensemble
Quantile Regression

4.03121 £ 2.78375
2.22525 £ 0.471309
3.61704 £ 1.13624
2.78757 £ 1.16951
3.70405 £ 0.81647

18.8216 £ 11.8302
12.2881 £ 2.78795
14.5492 + 4.44927
17.1285 £ 4.33367
13.8023 £ 2.19085

0.9117 £ 0.00275173
0.8994 + 0.00689986
0.90286 =+ 0.00594629
0.90062 + 0.0027571
0.90486 4 0.006771

1.0

Gaussian + Selective GMM
Gaussian + Selective kNN
Gaussian + Selective Variance
Gaussian Ens + Selec GMM
Gaussian Ens + Selec Ens Var

3.61704 £ 1.13624
3.61704 £ 1.13624
3.61704 £ 1.13624
2.78757 £ 1.16951
2.78757 & 1.16951

14.5492 £ 4.44927
14.5492 + 4.44927
14.5492 + 4.44927
17.1285 £ 4.33367
17.1285 £ 4.33367

0.905241 + 0.00448315
0.900069 =+ 0.00677637
0.904839 £ 0.00795449
0.899999 £ 0.00311328
0.896465 4 0.0015705

0.95216 £ 0.00290558
0.94656 4 0.00470472
0.95712 4 0.00200938
0.95066 =+ 0.0023105
0.95156 + 0.00215277

Table A2: Complete results on the Cells-Tails dataset.

Method val MAE () val Interval Length (|) test Coverage (> 0.90) test Prediction Rate (1)
Conformal Prediction 3.56733 + 1.0818 14.2128 + 4.23582 0.55356 + 0.0299096 1.0
Ensemble 1.83461 + 0.178937 9.8697 £+ 1.6672 0.50078 + 0.007608 1.0
Gaussian 4.05446 + 1.33153 15.4321 + 4.98796 0.54402 + 0.0347525 1.0
Gaussian Ensemble 2.40691 + 0.580524  10.9696 & 1.70051 0.5874 £ 0.0479263 1.0
Quantile Regression 3.32571 £1.24578 13.0848 + 3.54239 0.52222 + 0.0284102 1.0

Gaussian + Selective GMM
Gaussian + Selective kNN
Gaussian + Selective Variance
Gaussian Ens + Selec GMM
Gaussian Ens + Selec Ens Var

4.05446 = 1.33153
4.05446 £ 1.33153
4.05446 £ 1.33153
2.40691 £ 0.580524
2.40691 4 0.580524

15.4321 £ 4.98796
15.4321 £ 4.98796
15.4321 £ 4.98796
10.9696 £ 1.70051
10.9696 £ 1.70051

0.889825 + 0.0193021
0.859179 + 0.0255173
0.687475 % 0.0659807
0.877068 % 0.0222502
0.660212 £ 0.0325832

0.53654 £ 0.0101012
0.56692 £ 0.0127107
0.6914 £ 0.0651196
0.53604 £ 0.0125903
0.74512 + 0.0438128

Table A3: Complete results on the Cells-Gap dataset.

Method val MAE () val Interval Length ()  test Coverage (> 0.90) test Prediction Rate (1)
Conformal Prediction 3.67702+1.33587  17.1152 4+ 6.49211 0.64002 + 0.0620287 1.0
Ensemble 2.7261 £0.705274  13.4061 + 2.40513 0.6771 £ 0.0544788 1.0
Gaussian 3.53089 + 1.0619 15.6396 =+ 6.23458 0.66028 + 0.114703 1.0
Gaussian Ensemble 3.46118 + 0.95429 18.707 + 4.13287 0.7066 + 0.0317638 1.0
Quantile Regression 4.75328 £ 1.73499 18.108 4+ 4.21716 0.64488 + 0.12875 1.0

Gaussian + Selective GMM
Gaussian + Selective kNN
Gaussian + Selective Variance
Gaussian Ens + Selec GMM
Gaussian Ens + Selec Ens Var

3.53089 £ 1.0619
3.53089 £ 1.0619
3.53089 £ 1.0619
3.46118 & 0.95429
3.46118 £ 0.95429

15.6396 £ 6.23458
15.6396 £ 6.23458
15.6396 £ 6.23458
18.707 4 4.13287
18.707 4 4.13287

0.890569 % 0.00953089
0.874032 =4 0.0432364
0.652766 & 0.117192
0.896848 4 0.0127879
0.68326 = 0.0299799

0.49372 £ 0.0025926
0.53646 £ 0.0139864
0.9748 £ 0.000940213
0.49278 £ 0.00192914
0.9147 £ 0.0182427

Table A4: Complete

results on the ChairAngle dataset.

Method

val MAE (])

val Interval Length (])

test Coverage (> 0.90)

test Prediction Rate (1)

Conformal Prediction
Ensemble

Gaussian

Gaussian Ensemble
Quantile Regression

0.289127 + 0.081643
0.189858 £ 0.0548452
0.376692 £ 0.171928
0.361834 + 0.165348
0.851253 £ 0.544717

1.08752 + 0.202247

0.788401 £ 0.137465
1.37757 £ 0.382191
1.2044 + 0.442422
3.19741 £ 1.9751

0.905265 + 0.00339915
0.909915 +£ 0.00399101
0.901577 £ 0.00308472
0.910414 + 0.00316257
0.906209 + 0.00204038

1.0

Gaussian + Selective GMM
Gaussian + Selective kNN
Gaussian + Selective Variance
Gaussian Ens + Selec GMM
Gaussian Ens + Selec Ens Var

0.376692 £ 0.171928
0.376692 £ 0.171928
0.376692 £ 0.171928
0.361834 £ 0.165348
0.361834 £ 0.165348

1.37757 £ 0.382191
1.37757 £ 0.382191
1.37757 £ 0.382191
1.2044 £ 0.442422
1.2044 + 0.442422

0.902482 =+ 0.00436054
0.90222 =+ 0.00459694
0.904805 + 0.00765098
0.9093 + 0.00297263
0.905905 =+ 0.00336481

0.972739 £ 0.00191733
0.975465 £ 0.00201785
0.961782 £ 0.0193133
0.969033 £ 0.000940447
0.951359 £ 0.00453556

Table A5: Complete results on the ChairAngle-Tails dataset.

Method

val MAE (})

val Interval Length ()

test Coverage (> 0.90)

test Prediction Rate (1)

Conformal Prediction
Ensemble

Gaussian

Gaussian Ensemble
Quantile Regression

0.358162 + 0.168257
0.21931 + 0.0596705
0.241214 £ 0.091736
0.13365 £ 0.0189933
0.820934 + 0.653268

1.31102 £ 0.531401
1.04074 + 0.245846
1.09417 £ 0.382907
0.769172 £ 0.0814039
2.9815 £ 2.15473

0.615804 + 0.00527695
0.611706 + 0.00345611
0.622592 + 0.00714065
0.617016 £ 0.0063698
0.660953 + 0.0379624

1.0
1.0
1.0
1.0
1.0

Gaussian + Selective GMM
Gaussian + Selective kNN
Gaussian + Selective Variance
Gaussian Ens + Selec GMM
Gaussian Ens + Selec Ens Var

0.241214 4 0.091736
0.241214 4 0.091736
0.241214 4+ 0.091736
0.13365 £ 0.0189933
0.13365 £ 0.0189933

1.09417 £ 0.382907

1.09417 + 0.382907

1.09417 + 0.382907
0.769172 £+ 0.0814039
0.769172 £ 0.0814039

0.901946 + 0.00382993
0.860311 + 0.00617031
0.647559 + 0.0360179
0.904807 £ 0.00394199
0.751845 + 0.0131765

0.655448 + 0.001058
0.703038 + 0.00691227
0.924383 £ 0.0751205
0.651314 £ 0.0013893
0.772401 £ 0.00878839
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Table A6: Complete results on the ChairAngle-Gap dataset.

Method val MAE () val Interval Length (])  test Coverage (> 0.90)  test Prediction Rate (1)
Conformal Prediction 0.35034 + 0.161819 1.35 £ 0.547089 0.659546 4 0.00916108 1.0
Ensemble 0.22898 4= 0.0853825 1.1222 4 0.174147 0.749951 + 0.0155327 1.0
Gaussian 0.454516 £ 0.280174  2.09212 4 0.933756 0.69363 % 0.0345876 1.0
Gaussian Ensemble 0.226352 + 0.0677413  1.30588 +0.136235  0.731065 £ 0.0126216 1.0
Quantile Regression 0.639151 + 0.296536 3.29137 £ 1.53269 0.695697 £ 0.0413613 1.0

Gaussian + Selective GMM
Gaussian + Selective kNN
Gaussian + Selective Variance
Gaussian Ens + Selec GMM
Gaussian Ens + Selec Ens Var

0.454516 & 0.280174
0.454516 £ 0.280174
0.454516 £ 0.280174
0.226352 £ 0.0677413
0.226352 £ 0.0677413

2.09212 £ 0.933756
2.09212 £ 0.933756
2.09212 £ 0.933756
1.30588 £ 0.136235
1.30588 £ 0.136235

0.91215 4 0.00604745
0.911574 4 0.00376608
0.690436 £ 0.0366025
0.905039 £ 0.00229837
0.794531 & 0.014876

0.649372 £ 0.00334919
0.673764 4 0.0113432
0.981292 4 0.0152406
0.648624 £ 0.00094348
0.7711 £0.0191172

Table A7: Complete results on the AssetWealth dataset.

Method

val MAE ({)

val Interval Length ({)

test Coverage (> 0.90)

test Prediction Rate (1)

Conformal Prediction
Ensemble

Gaussian

Gaussian Ensemble
Quantile Regression

0.346532 £ 0.00578306
0.320002 =£ 0.00264202
0.367501 £ 0.0416437
0.3295 £ 0.00783906
0.404279 £ 0.0683226

1.5838 £ 0.0318086
1.45568 £ 0.0129312
1.597 £ 0.207599
1.42071 £ 0.0485437
1.58957 £ 0.161689

0.87136 £ 0.0090944
0.87348 £ 0.00598963
0.844966 & 0.0456831
0.866162 £ 0.00711672
0.823921 £ 0.0313343

1.0

Gaussian + Selective GMM
Gaussian + Selective kNN
Gaussian + Selective Variance
Gaussian Ens + Selec GMM
Gaussian Ens + Selec Ens Var

0.367501 4 0.0416437
0.367501 4 0.0416437
0.367501 4 0.0416437
0.3295 £ 0.00783906
0.3295 £ 0.00783906

1.597 £ 0.207599

1.597 £ 0.207599

1.597 £ 0.207599
1.42071 £ 0.0485437
1.42071 £ 0.0485437

0.850824 4 0.047533
0.852107 £ 0.0474734
0.846981 + 0.0430247
0.868444 £+ 0.00727312
0.85047 £ 0.00397082

0.93838 £ 0.0170443
0.933586 + 0.0203541
0.926874 + 0.0159098
0.937371 4+ 0.0138213
0.868282 + 0.0299149

Table A8: Complete results on the VentricularVolume dataset.

Method

val MAE (})

val Interval Length (])

test Coverage (> 0.90)

test Prediction Rate (1)

Conformal Prediction
Ensemble

Gaussian

Gaussian Ensemble
Quantile Regression

11.2471 £ 0.201399
10.2476 + 0.113707
12.7238 £ 1.52197
10.1141 £ 0.180661
12.4944 + 0.676265

47.4505 £ 1.556
41.8445 £ 0.750822
51.566 + 3.52739
39.9817 £+ 1.91308
49.0448 + 3.33314

0.603135 £ 0.0125842
0.707367 £ 0.00877743
0.730878 £ 0.0619045
0.795768 £ 0.0231243
0.710972 £ 0.045171

1.0

Gaussian + Selective GMM
Gaussian + Selective KNN
Gaussian + Selective Variance
Gaussian Ens + Selec GMM
Gaussian Ens + Selec Ens Var

12.7238 £ 1.52197
12.7238 £1.52197
12.7238 £1.52197
10.1141 £ 0.180661
10.1141 £ 0.180661

51.566 + 3.52739
51.566 + 3.52739
51.566 + 3.52739
39.9817 4 1.91308
39.9817 £+ 1.91308

0.752046 £ 0.0529087
0.735105 £ 0.0612413
0.747868 £ 0.0569984
0.798094 + 0.0166674
0.763412 £ 0.0286772

0.707994 £ 0.0208741
0.911599 £ 0.0447475
0.691693 £ 0.0341016
0.646865 + 0.0366201
0.686207 & 0.0431835

Table A9: Complete results on the BrainTumourPixels dataset.

Method val MAE ({) val Interval Length (])  test Coverage (> 0.90) test Prediction Rate (1)
Conformal Prediction 21.3163 + 0.45997 93.7169 £2.99061  0.885925 & 0.00395743 1.0
Ensemble 21.1133 £0.210209  90.3825 + 0.825858  0.878183 & 0.00318872 1.0
Gaussian 21.0625 +0.358012  93.6284 +2.29916  0.873544 £ 0.00871896 1.0
Gaussian Ensemble 20.5336 +0.211421  87.7414 £ 0.818979  0.868426 =+ 0.00328047 1.0
Quantile Regression 22.0348 £0.697606  94.3249 £+ 3.07265  0.879079 £ 0.00380396 1.0

Gaussian + Selective GMM
Gaussian + Selective KNN
Gaussian + Selective Variance
Gaussian Ens + Selec GMM
Gaussian Ens + Selec Ens Var

21.0625 £ 0.358012
21.0625 + 0.358012
21.0625 £ 0.358012
20.5336 £ 0.211421
20.5336 £ 0.211421

93.6284 + 2.29916
93.6284 4 2.29916
93.6284 £ 2.29916
87.7414 £ 0.818979
87.7414 £ 0.818979

0.883515 + 0.0138279
0.891264 + 0.00734602
0.878666 £ 0.00735197
0.873824 + 0.00466519
0.877211 £ 0.00302057

0.973576 4 0.0187252
0.947185 £ 0.0178434
0.978791 £ 0.00694672
0.985349 + 0.00461984
0.975368 £ 0.00323397

Table A10: Complete results on the SkinLesionPixels dataset.

Method

val MAE (])

val Interval Length (])

test Coverage (> 0.90)

test Prediction Rate (1)

Conformal Prediction
Ensemble

Gaussian

Gaussian Ensemble
Quantile Regression

107.514 4 1.87464
99.3156 £ 0.997867
105.417 +1.15178
100.639 4 0.464183
113.076 & 3.20875

492.922 + 14.1865
353.842 4 4.73577
535.139 + 215.446
472.14 4 85.2654
405.904 £ 4.75158

0.708012 + 0.00917777
0.742098 £ 0.00852236
0.797255 + 0.0270734
0.822931 £ 0.0134328
0.719788 + 0.0213826

1.0
1.0
1.0
1.0
1.0

Gaussian + Selective GMM
Gaussian + Selective kNN
Gaussian + Selective Variance
Gaussian Ens + Selec GMM
Gaussian Ens + Selec Ens Var

105.417 £ 1.15178
105.417 £ 1.15178
105.417 £ 1.15178
100.639 & 0.464183
100.639 + 0.464183

535.139 + 215.446
535.139 £ 215.446
535.139 + 215.446
472.14 £ 85.2654
472.14 £+ 85.2654

0.821515 £ 0.0137705
0.813027 £ 0.0306586
0.799821 + 0.0150855
0.826921 £ 0.00719649
0.819129 4 0.00910128

0.849579 + 0.0206181
0.927047 £ 0.00830718
0.77946 4 0.059169
0.839132 £ 0.0108815
0.782116 £ 0.0109776
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Table A11: Complete results on the HistologyNucleiPixels dataset.

Method val MAE ({) val Interval Length (|)  test Coverage (> 0.90)  test Prediction Rate (1)
Conformal Prediction 217.887 £3.71766  993.665 + 18.3282 0.841288 + 0.0128314 1.0
Ensemble 197.078 £1.99489  853.361 £ 14.1904  0.812704 + 0.00664074 1.0
Gaussian 211.795 4+ 10.0239 1211.83 £ 396.946 0.588796 £ 0.0912794 1.0
Gaussian Ensemble 196.785 + 2.14454 1108.53 £+ 145.034 0.54936 £ 0.05995 1.0
Quantile Regression 227.895 +9.37415 914.909 =+ 45.995 0.684076 + 0.0428704 1.0

Gaussian + Selective GMM
Gaussian + Selective KNN
Gaussian + Selective Variance
Gaussian Ens + Selec GMM
Gaussian Ens + Selec Ens Var

211.795 £ 10.0239
211.795 £ 10.0239
211.795 £ 10.0239
196.785 £ 2.14454
196.785 + 2.14454

1211.83 + 396.946
1211.83 £ 396.946
1211.83 £ 396.946
1108.53 £ 145.034
1108.53 £ 145.034

0.59554 4 0.0956742
0.608929 £ 0.0805954
0.588598 4 0.0913593
0.553725 4 0.0642274
0.555149 £ 0.0620052

0.90569 £ 0.0453555
0.846228 £ 0.0482832
0.998765 £ 0.00134954
0.882488 4 0.0156395
0.954477 £ 0.0256246

Table A12:

Complete results on the AerialBuildingPixels dataset.

Method

val MAE ()

val Interval Length ()

test Coverage (> 0.90)

test Prediction Rate (1)

Conformal Prediction
Ensemble

Gaussian

Gaussian Ensemble
Quantile Regression

235.417 £ 7.16096
199.206 + 2.76543
217.877 £1.72493
208.487 £ 1.03581
242.284 £6.0122

1038.45 & 51.5565
798.312 £ 6.80986
929.562 + 47.6606
885.349 £ 27.8584
909.191 £ 24.9528

0.637584 £ 0.0691102
0.772494 £ 0.0227288
0.698766 £ 0.0662263
0.812339 £ 0.0617386
0.763342 £ 0.0902358

Gaussian + Selective GMM
Gaussian + Selective KNN
Gaussian + Selective Variance
Gaussian Ens + Selec GMM
Gaussian Ens + Selec Ens Var

217.877 £1.72493
217.877 £1.72493
217.877 £1.72493
208.487 £ 1.03581
208.487 £ 1.03581

929.562 £ 47.6606
929.562 + 47.6606
929.562 £ 47.6606
885.349 £ 27.8584
885.349 £ 27.8584

0.76535 £ 0.0388677
0.651867 £ 0.0771154
0.725714 £ 0.0779575
0.847101 £ 0.038266
0.838352 £ 0.0312236

0.652082 £ 0.0990489
0.840103 £ 0.0463989
0.708226 £ 0.103803
0.686787 £ 0.0278702
0.571928 £ 0.0402727

Table A13: Miscoverage rate a = 0.2: Results on the Cells dataset.

Method

val MAE (|)

val Interval Length ()

test Coverage (> 0.80)

test Prediction Rate (1)

Conformal Prediction
Gaussian

Gaussian Ensemble
Quantile Regression

4.03121 £ 2.78375
3.61704 £ 1.13624
2.78757 £ 1.16951
4.40758 £ 1.47411

14.042 £10.2791
11.544 + 3.59513
13.1298 4 3.34997
13.3314 £ 4.39511

0.811 4 0.0100485
0.808 % 0.00859046
0.80044 + 0.00316582
0.80152 + 0.00667005

1.0
1.0
1.0
1.0

Gaussian + Selective GMM
Gaussian Ens + Selective Ens Var

3.61704 £ 1.13624
2.78757 £ 1.16951

11.544 + 3.59513
13.1298 4 3.34997

0.811076 + 0.00507358
0.793124 £ 0.00576659

0.95216 £ 0.00280043
0.95156 + 0.00215277

Table A14: Miscoverage rate v = 0.2: Results on the Cells-Tails dataset.

Method

val MAE (})

val Interval Length ({)

test Coverage (> 0.80)

test Prediction Rate (1)

Conformal Prediction
Gaussian

Gaussian Ensemble
Quantile Regression

3.56733 + 1.0818
4.05446 £+ 1.33153
2.40691 £ 0.580524
4.20398 £ 1.61554

11.3841 + 3.54242
12.7086 + 4.39552
8.62187 £ 1.5177
13.1241 + 4.61204

0.48332 £ 0.0337429
0.47106 £ 0.0319074
0.4768 £ 0.0461347
0.49358 £ 0.0341114

1.0
1.0
1.0
1.0

Gaussian + Selective GMM
Gaussian Ens + Selective Ens Var

4.05446 £+ 1.33153
2.40691 £ 0.580524

12.7086 =+ 4.39552
8.62187 £ 1.5177

0.788228 £ 0.0239896
0.567734 £ 0.0270648

0.5364 £ 0.0100584
0.74512 £ 0.0438128

Table A15: Miscoverage rate o = 0.2: Results on the ChairAngle dataset.

Method

val MAE ({)

val Interval Length ()

test Coverage (> 0.80)

test Prediction Rate (1)

Conformal Prediction
Gaussian

Gaussian Ensemble
Quantile Regression

0.289127 + 0.081643
0.376692 £+ 0.171928
0.361834 £ 0.165348
0.648062 + 0.181932

0.872808 £ 0.205426
1.14193 + 0.40832
1.01037 + 0.399644
1.87322 + 0.428951

0.80212 £ 0.00337798
0.806646 £ 0.00565869
0.813452 £ 0.00329742
0.807127 £ 0.00380433

1.0
1.0
1.0
1.0

Gaussian + Selective GMM
Gaussian Ens + Selective Ens Var

0.376692 + 0.171928
0.361834 + 0.165348

1.14193 + 0.40832
1.01037 4 0.399644

0.807801 =+ 0.0066405
0.804719 + 0.00318856

0.972829 + 0.0019256
0.951359 + 0.00453556

Table A16: Miscoverage rate a = 0.2: Results on the ChairdAngle-Gap dataset.

Method

val MAE (})

val Interval Length ({)

test Coverage (> 0.80)

test Prediction Rate ()

Conformal Prediction
Gaussian

Gaussian Ensemble
Quantile Regression

0.35034 £ 0.161819
0.454516 + 0.280174

0.226352 £ 0.0677413

0.692597 4 0.269476

1.09877 £ 0.497591
1.69802 = 0.840083
0.972076 + 0.118477
2.29958 + 0.738934

0.588472 + 0.0119766
0.613951 + 0.0358797
0.6431 £ 0.0136145
0.600606 + 0.0136385

1.0
1.0
1.0
1.0

Gaussian + Selective GMM
Gaussian Ens + Selective Ens Var

0.454516 + 0.280174

0.226352 4 0.0677413

1.69802 =+ 0.840083
0.972076 + 0.118477

0.813442 + 0.00720691
0.701301 + 0.0146886

0.650227 4 0.00138861
0.7711 £ 0.0191172
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Table A17: Miscoverage rate « = 0.2: Results on the VentricularVolume dataset.

Method

val MAE ({)

val Interval Length ()

test Coverage (> 0.80) test Prediction Rate ()

Conformal Prediction
Gaussian

Gaussian Ensemble
Quantile Regression

11.2471 £ 0.201399
12.7238 4+ 1.52197
10.1141 £ 0.180661
12.5465 + 0.941364

33.0996 + 0.991594
37.3172 + 4.91536
29.9914 + 1.12007
35.8073 £ 1.5139

0.457053 4 0.00583106 1.0
0.589342 + 0.0793156 1.0
0.678527 £ 0.0277009 1.0
0.537774 £ 0.0444887 1.0

Gaussian + Selective GMM
Gaussian Ens + Selective Ens Var

12.7238 4+ 1.52197
10.1141 £ 0.180661

37.3172 £ 4.91536
29.9914 + 1.12007

0.709875 + 0.0232873
0.686207 £ 0.0431835

0.609177 £ 0.0682058
0.640078 £ 0.0277429

Table A18: Miscoverage rate a = 0.2: Results on the BrainTumourPixels dataset.

Method val MAE ({) val Interval Length ()  test Coverage (> 0.80)  test Prediction Rate (1)
Conformal Prediction 21.3163 £ 0.45997 66.146 + 2.75637 0.824632 £ 0.0128289 1.0
Gaussian 21.0625 + 0.358012 64.2423 £1.9975 0.798113 + 0.0133438 1.0
Gaussian Ensemble 20.5336 £ 0.211421  62.5706 £ 0.713494  0.796961 + 0.00658989 1.0
Quantile Regression 21.9545 + 0.149787 66.2654 + 1.33091 0.807646 + 0.0165337 1.0

Gaussian + Selective GMM
Gaussian Ens + Selective Ens Var

21.0625 £ 0.358012
20.5336 4+ 0.211421

64.2423 4+ 1.9975
62.5706 4 0.713494

0.809477 £0.0139729  0.973576 £ 0.0187252
0.806998 + 0.00641546  0.975368 £ 0.00323397

Table A19: Miscoverage rate o = 0.2: Results on the SkinLesionPixels dataset.

Method

val MAE ({)

val Interval Length ()

test Coverage (> 0.80) test Prediction Rate (1)

Conformal Prediction
Gaussian

Gaussian Ensemble
Quantile Regression

107.514 £ 1.87464
105.417 £+ 1.15178
100.639 + 0.464183
106.382 £ 2.70593

275.494 £ 5.60123
395.661 + 174.897
351.961 £ 70.4308
251.346 £ 8.67954

0.553254 + 0.0122434 1.0
0.689951 + 0.0406148 1.0
0.715272 £ 0.0278757 1.0
0.590792 £+ 0.0115523 1.0

Gaussian + Selective GMM
Gaussian Ens + Selective Ens Var

105.417 4+ 1.15178
100.639 + 0.464183

395.661 + 174.897
351.961 £ 70.4308

0.849668 + 0.0189464
0.782116 £ 0.0109776

0.708767 + 0.0274691
0.704273 + 0.0198608

Table A20: Miscoverage rate o = 0.2: Results on the HistologyNucleiPixels dataset.

Method val MAE () val Interval Length (]) test Coverage (> 0.80) test Prediction Rate (1)
Conformal Prediction 217.887 £ 3.71766 688.269 + 13.6761 0.744155 + 0.0107073 1.0
Gaussian 211.795 £10.0239  902.884 4 295.983  0.454345 + 0.0986975 1.0
Gaussian Ensemble 196.785 £ 2.14454 840.287 + 113.005 0.412528 + 0.0544736 1.0
Quantile Regression 221.136 +9.7918 679.117 + 30.6895 0.580503 + 0.0463751 1.0

Gaussian + Selective GMM
Gaussian Ens + Selective Ens Var

211.795 £ 10.0239
196.785 £ 2.14454

902.884 £ 295.983
840.287 £ 113.005

0.462248 4 0.105935  0.901985 =+ 0.0400294
0.417977 £ 0.0572495  0.954477 £ 0.0256246

Table A21: Miscoverage rate o = 0.2: Results on the AerialBuildingPixels dataset.

Method

val MAE ({)

val Interval Length ()

test Coverage (> 0.80) test Prediction Rate (1)

Conformal Prediction
Gaussian

Gaussian Ensemble
Quantile Regression

235.417 £ 7.16096
217.877 £1.72493
208.487 £ 1.03581
229.243 £ 6.21038

685.829 £ 31.3669
685.899 & 43.1749
658.243 £ 27.1206
662.104 & 18.5495

0.52437 4 0.0610316 1.0
0.60129 & 0.0717427 1.0
0.683599 + 0.0674139 1.0
0.635733 £ 0.0350343 1.0

Gaussian + Selective GMM
Gaussian Ens + Selective Ens Var

217.877 £ 1.72493
208.487 £ 1.03581

685.899 & 43.1749
658.243 £ 27.1206

0.679246 £ 0.0462652
0.743714 £ 0.0354023

0.65018 £ 0.0999173
0.571928 + 0.0402727

Table A22: Miscoverage rate o = 0.05: Results on the Cells dataset.

Method

val MAE (})

val Interval Length (})

test Coverage (> 0.95)  test Prediction Rate (1)

Conformal Prediction
Gaussian

Gaussian Ensemble
Quantile Regression

4.03121 £ 2.78375
3.61704 £+ 1.13624
2.78757 £ 1.16951
3.5478 £ 1.25834

22.3973 +£12.7194
17.0459 + 4.98381
20.5445 £ 5.00176
17.8244 + 3.57608

0.95612 + 0.00460235 1.0
0.95402 + 0.00275928 1.0
0.9484 £ 0.00331843 1.0
0.94858 + 0.00565346 1.0

Gaussian + Selective GMM
Gaussian Ens + Selective Ens Var

3.61704 £+ 1.13624
2.78757 £ 1.16951

17.0459 + 4.98381
20.5445 £ 5.00176

0.95212 £ 0.00276362
0.95156 + 0.00215277

0.955558 £ 0.0032579
0.946085 £ 0.00337562

Table A23: Miscoverage rate a = 0.05: Results on the Cells-Tails dataset.

Method

val MAE (})

val Interval Length (])

test Coverage (> 0.95) test Prediction Rate (1)

Conformal Prediction
Gaussian

Gaussian Ensemble
Quantile Regression

3.56733 £ 1.0818
4.05446 £+ 1.33153
2.40691 + 0.580524
3.34375 £ 0.642763

16.3831 + 4.80611
17.5443 £ 5.3978
13.1205 + 1.81604
14.5539 + 2.01592

1.0
1.0
1.0
1.0

0.59048 + 0.0307226
0.59066 £ 0.0417946
0.67218 =+ 0.0308246
0.5666 £ 0.0295055

Gaussian + Selective GMM
Gaussian Ens + Selective Ens Var

4.05446 £+ 1.33153
2.40691 + 0.580524

17.5443 £ 5.3978
13.1205 + 1.81604

0.941551 + 0.0164539
0.720221 + 0.0374625

0.53636 £ 0.0100057
0.74512 £ 0.0438128
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Table A24: Miscoverage rate a = 0.05: Results on the ChairAngle dataset.

Method

val MAE ({)

val Interval Length (])

test Coverage (> 0.95)

test Prediction Rate (1)

Conformal Prediction
Gaussian

Gaussian Ensemble
Quantile Regression

0.289127 £ 0.081643
0.376692 4+ 0.171928
0.361834 4 0.165348
0.888707 4 0.472522

1.27437 £ 0.18759
1.59112 £ 0.367248
1.38384 + 0.481345
4.04185 £ 1.50356

0.953087 4 0.000729425
0.949381 4+ 0.00143361
0.95633 + 0.0016841
0.951608 4 0.00184683

1.0
1.0
1.0
1.0

Gaussian + Selective GMM
Gaussian Ens + Selective Ens Var

0.376692 4 0.171928
0.361834 £ 0.165348

1.59112 £ 0.367248
1.38384 + 0.481345

0.949963 =+ 0.00265095
0.9541 £ 0.00167267

0.97208 + 0.00166628
0.951359 £ 0.00453556

Table A25: Miscoverage rate « = 0.05: Results on the ChairAngle-Gap dataset.

Method val MAE () val Interval Length ()  test Coverage (> 0.95) test Prediction Rate (1)
Conformal Prediction 0.35034 + 0.161819 1.56264 + 0.582954  0.697817 £ 0.00918537 1.0
Gaussian 0.454516 + 0.280174 2.39892 + 1.02472 0.733595 + 0.0367327 1.0
Gaussian Ensemble 0.226352 £ 0.0677413  1.59703 + 0.159795 0.780615 £ 0.0141415 1.0
Quantile Regression 1.43807 + 0.99796 5.57113 £ 1.71783 0.759929 + 0.034465 1.0

Gaussian + Selective GMM
Gaussian Ens + Selective Ens Var

0.454516 £ 0.280174
0.226352 + 0.0677413

2.39892 + 1.02472
1.59703 £ 0.159795

0.95774 £ 0.00281998
0.844587 £ 0.0165508

0.64882 £ 0.00276083
0.7711 £ 0.0191172

Table A26: Miscoverage rate o« = 0.05: Results on the VentricularVolume dataset.

Method

val MAE ({)

val Interval Length ({)

test Coverage (> 0.95)

test Prediction Rate (1)

Conformal Prediction
Gaussian
Gaussian Ensemble

11.2471 £ 0.201399
12.7238 £ 1.52197
10.1141 £ 0.180661
12.0793 £ 0.130032

70.211 & 1.37665
67.1562 & 6.31002
51.9065 & 3.94789
61.623 £ 3.04835

0.776176 & 0.00853621
0.837931 4 0.0396691
0.876646 4 0.0140944

1.0
1.0
1.0

0.843574 4 0.0243659 1.0

0.854302 4 0.0279176  0.710188 =4 0.0225912
0.855053 4 0.0125036  0.686207 4 0.0431835

Quantile Regression

Gaussian + Selective GMM
Gaussian Ens + Selective Ens Var

12.7238 £ 1.52197
10.1141 £ 0.180661

67.1562 & 6.31002
51.9065 =+ 3.94789

Table A27: Miscoverage rate « = 0.05: Results on the BrainTumourPixels dataset.

Method val MAE (]) val Interval Length ()  test Coverage (> 0.95)  test Prediction Rate (1)
Conformal Prediction 21.3163 £ 0.45997 123.719 £ 2.07495 0.921113 4 0.00123648 1.0
Gaussian 21.0625 + 0.358012 123.587 £ 3.3168 0.910141 +£ 0.00537523 1.0
Gaussian Ensemble 20.5336 + 0.211421 113.592 4 1.37398 0.905182 + 0.00359141 1.0
Quantile Regression 24.6897 + 2.49388 126.788 £ 7.00165 0.915995 + 0.00956349 1.0

Gaussian + Selective GMM
Gaussian Ens + Selective Ens Var

21.0625 £ 0.358012
20.5336 4+ 0.211421

123.587 &+ 3.3168
113.592 + 1.37398

0.919455 £ 0.0105219

0.973672 4 0.0186442

0.910995 4 0.00267557  0.975368 £ 0.00323397

Table A28: Miscoverage rate a = 0.05: Results on the SkinLesionPixels dataset.

Method

val MAE (])

val Interval Length (])

test Coverage (> 0.95)

test Prediction Rate (1)

Conformal Prediction
Gaussian

Gaussian Ensemble
Quantile Regression

107.514 £ 1.87464
105.417 £ 1.15178

100.639 £ 0.464183
112.07 £ 5.13986

845.109 & 31.2572
691.768 & 232.071
582.719 4 95.3488
627.938 & 68.3371

0.822753 4 0.0104666
0.866844 £ 0.0166304

0.881009 £ 0.00686587
0.827977 £ 0.017595

1.0
1.0
1.0
1.0

Gaussian + Selective GMM
Gaussian Ens + Selective Ens Var

105.417 £ 1.15178
100.639 £ 0.464183

691.768 & 232.071
582.719 4 95.3488

0.889891 4 0.00940058
0.881749 £ 0.00534917

0.849225 4 0.0194809
0.782116 4 0.0109776

Table A29: Miscoverage rate o = 0.05: Results on the HistologyNucleiPixels dataset.

Method

val MAE (])

val Interval Length ()

test Coverage (> 0.95)

test Prediction Rate (1)

Conformal Prediction

Gaussian
Gaussian Ensemble
Quantile Regression

217.887 + 3.71766
211.795 £ 10.0239
196.785 + 2.14454
251.562 4 12.244

1282.78 + 25.9915
1491.62 + 472.378
1358.12 £ 174.189
1191.96 + 65.3122

0.896603 + 0.0113207
0.680018 £ 0.0860417
0.66749 £ 0.0522544
0.754566 =+ 0.0379023

1.0
1.0
1.0
1.0

Gaussian + Selective GMM
Gaussian Ens + Selective Ens Var

211.795 £ 10.0239
196.785 + 2.14454

1491.62 + 472.378
1358.12 £ 174.189

0.68897 £ 0.0895173
0.673945 £ 0.0533738

0.901191 = 0.0405698
0.954477 £ 0.0256246

Table A30: Miscoverage rate o = 0.05: Results on the AerialBuildingPixels dataset.

Method

val MAE (])

val Interval Length ()

test Coverage (> 0.95)

test Prediction Rate (1)

Conformal Prediction

Gaussian
Gaussian Ensemble
Quantile Regression

235.417 £ 7.16096
217.877 £ 1.72493
208.487 £ 1.03581
294.181 £ 19.9268

1474.93 + 53.6301
1181.55 + 41.5859
1108.87 £ 21.3551
1281.37 + 51.1001

0.731414 £ 0.070291
0.773522 £ 0.0548329
0.88874 £ 0.0490213
0.888175 + 0.028968

1.0
1.0
1.0
1.0

Gaussian + Selective GMM

217.877 £ 1.72493

Gaussian Ens + Selective Ens Var  208.487 & 1.03581

1181.55 + 41.5859
1108.87 £ 21.3551

0.831501 £ 0.0374173
0.899838 + 0.0263409

0.650797 4 0.0987431
0.571928 + 0.0402727

VII-48



Table A31: Method variation results on the Cells dataset.

Method val MAE (]) val Interval Length ()  test Coverage (> 0.90) test Prediction Rate (1)

0.905241 + 0.00448315
0.9044 £ 0.00481955
0.904928 =+ 0.00469093
0.908 £ 0.00703097
0.900069 =+ 0.00677637
0.900146 £ 0.00671325
0.900048 £ 0.00691667
0.906295 =+ 0.00579854

0.95216 =4 0.00290558
0.952 £ 0.00270259
0.9528 + 0.00331662

0.95118 4 0.00220672

0.94656 =4 0.00470472

0.94736 £ 0.00395049

0.94624 + 0.00248564

0.95166 + 0.00422734

Gaussian + Selective GMM
Gaussian + Selective GMM, k = 2
Gaussian + Selective GMM, k = 8
Gaussian + Sel. GMM, Spec. Norm
Gaussian + Selective kNN
Gaussian + Selective KNN, k = 5
Gaussian + Selective kNN, & = 20
Gaussian + Selective kNN, L2

3.61704 £ 1.13624
3.61704 4+ 1.13624
3.61704 4 1.13624
4.80289 £ 1.89759
3.61704 £ 1.13624
3.61704 £ 1.13624
3.61704 4+ 1.13624
3.61704 4 1.13624

14.5492 + 4.44927
14.5492 + 4.44927
14.5492 + 4.44927
18.5596 + 9.13391
14.5492 + 4.44927
14.5492 + 4.44927
14.5492 + 4.44927
14.5492 + 4.44927

Table A32: Method variation results on the Cells-Tails dataset.

Method val MAE (]) val Interval Length (})  test Coverage (> 0.90) test Prediction Rate (1)

0.889825 £ 0.0193021
0.891933 £ 0.0175265
0.893648 + 0.0182098
0.881351 4+ 0.021587
0.859179 £ 0.0255173
0.855387 £ 0.0261636
0.862429 + 0.0264602
0.898932 £ 0.00921808

0.53654 & 0.0101012
0.525 £ 0.00829409
0.53516 4 0.00975635
0.5331 £ 0.0157885
0.56692 + 0.0127107
0.57206 £ 0.0129226
0.56236 + 0.0122017
0.51486 4 0.00474662

Gaussian + Selective GMM
Gaussian + Selective GMM, k = 2
Gaussian + Selective GMM, k = 8
Gaussian + Sel. GMM, Spec. Norm
Gaussian + Selective kNN
Gaussian + Selective KNN, k = 5
Gaussian + Selective kNN, & = 20
Gaussian + Selective kNN, L2

4.05446 £ 1.33153
4.05446 £ 1.33153
4.05446 £+ 1.33153
4.91114 =+ 2.46961
4.05446 £ 1.33153
4.05446 £ 1.33153
4.05446 £ 1.33153
4.05446 £+ 1.33153

15.4321 £ 4.98796
15.4321 + 4.98796
15.4321 £ 4.98796
17.3945 £ 7.3177
15.4321 + 4.98796
15.4321 £ 4.98796
15.4321 + 4.98796
15.4321 + 4.98796

Table A33: Method variation results on the Cells-Gap dataset.

Method val MAE (]) val Interval Length (])  test Coverage (> 0.90)  test Prediction Rate (1)

15.6396 + 6.23458
15.6396 + 6.23458
15.6396 + 6.23458
12.194 £ 1.10907
15.6396 + 6.23458
15.6396 + 6.23458
15.6396 + 6.23458
15.6396 + 6.23458

0.890569 =+ 0.00953089
0.892265 =+ 0.00867262
0.88967 £ 0.0111239
0.883644 £ 0.0167566
0.874032 £ 0.0432364
0.874822 + 0.0424219
0.873876 + 0.0443446
0.887052 =+ 0.0144573

0.49372 + 0.0025926
0.48902 + 0.00420828
0.50196 = 0.00492041
0.4991 + 0.00761236
0.53646 £ 0.0139864
0.5368 £ 0.0137332
0.536 £ 0.014724
0.49576 4 0.00474578

Gaussian + Selective GMM
Gaussian + Selective GMM, k = 2
Gaussian + Selective GMM, k = 8
Gaussian + Sel. GMM, Spec. Norm
Gaussian + Selective kNN
Gaussian + Selective KNN, k£ = 5
Gaussian + Selective kNN, k& = 20
Gaussian + Selective kNN, L2

3.53089 & 1.0619
3.53089 4 1.0619
3.53089 4+ 1.0619
2.81679 £ 0.42988
3.53089 & 1.0619
3.53089 & 1.0619
3.53089 4+ 1.0619
3.53089 4+ 1.0619

Table A34: Method variation results on the ChairAngle dataset.

Method

val MAE (|)

val Interval Length ()

test Coverage (> 0.90)

test Prediction Rate (1)

Gaussian + Selective GMM
Gaussian + Selective GMM, k = 2
Gaussian + Selective GMM, k = 8
Gaussian + Sel. GMM, Spec. Norm

Gaussian + Selective kNN

Gaussian + Selective kNN, k = 5
Gaussian + Selective kNN, k& = 20
Gaussian + Selective kNN, L2

0.376692 £ 0.171928
0.376692 £ 0.171928
0.376692 4 0.171928
0.516487 £ 0.227015
0.376692 £ 0.171928
0.376692 + 0.171928
0.376692 £ 0.171928
0.376692 4 0.171928

1.37757 &+ 0.382191
1.37757 £ 0.382191
1.37757 £ 0.382191
1.82929 £ 0.809339
1.37757 £ 0.382191
1.37757 £ 0.382191
1.37757 £ 0.382191
1.37757 £ 0.382191

0.902482 + 0.00436054
0.902972 + 0.00540708
0.901822 + 0.00328732
0.903828 + 0.00534803
0.90222 =+ 0.00459694

0.902561 + 0.00342563
0.902137 £ 0.00457917
0.903183 £ 0.00504343

0.972739 £ 0.00191733
0.96392 £ 0.00121759
0.981238 4 0.00113892
0.970993 + 0.000466666
0.975465 + 0.00201785
0.983804 + 0.00152586
0.966592 + 0.00129222
0.977247 £ 0.00149241

Table A35: Method variation results on the ChairAngle-Tails dataset.

Method

val MAE ()

val Interval Length (])

test Coverage (> 0.90)

test Prediction Rate (1)

Gaussian + Selective GMM
Gaussian + Selective GMM, k = 2
Gaussian + Selective GMM, k = 8
Gaussian + Sel. GMM, Spec. Norm

Gaussian + Selective kNN

Gaussian + Selective kNN, k& =
Gaussian + Selective kNN, k& =

0.241214 4 0.091736
0.241214 4 0.091736
0.241214 4 0.091736
0.375118 + 0.24509
0.241214 4 0.091736
0.241214 4 0.091736
0.241214 4+ 0.091736
0.241214 £ 0.091736

1.09417 4 0.382907
1.09417 4 0.382907
1.09417 4 0.382907
1.24343 £ 0.611561
1.09417 4 0.382907
1.09417 4 0.382907
1.09417 £ 0.382907
1.09417 + 0.382907

0.901946 =+ 0.00382993
0.903353 £ 0.00471599
0.902103 = 0.00382668
0.910147 £ 0.00315697
0.860311 £ 0.00617031
0.88625 + 0.00498864
0.809551 =+ 0.00764886
0.89682 4 0.00698641

0.655448 4 0.001058
0.645452 £ 0.00155062
0.660472 £ 0.00115112
0 18 £0.00176257
0.703038 £ 0.00691227
0.683742 £ 0.00547083
0.743287 4 0.0107676
0.662076 4 0.00289246

Gaussian + Selective kNN, L2

Table A36: Method variation results on the Chairdngle-Gap dataset.

Method val MAE (]) val Interval Length ()  test Coverage (> 0.90) test Prediction Rate (1)

Gaussian + Selective GMM 0.454516 £0.280174  2.09212 4 0.933756  0.91215 4 0.00604745  0.649372 + 0.00334919
Gaussian + Selective GMM, k =2 0.454516 £ 0.280174  2.09212 4 0.933756  0.912708 + 0.00541793  0.642138 + 0.00143869
Gaussian + Selective GMM, k =8  0.454516 £ 0.280174  2.09212 4 0.933756  0.911374 £ 0.00475979  0.654824 + 0.00368979

0.910836 £ 0.00442911
0.911574 £ 0.00376608
0.91224 £ 0.00426519
0.907543 £ 0.00204724
0.913383 £ 0.00539352

0.649996 + 0.00233428
0.673764 £ 0.0113432
0.670646 + 0.00691764
0.680107 £ 0.0162927
0.658744 + 0.00274677

Gaussian + Sel. GMM, Spec. Norm
Gaussian + Selective kNN
Gaussian + Selective KNN, & = 5
Gaussian + Selective kNN, k& = 20
Gaussian + Selective kNN, L2

0.294511 £ 0.0861797
0.454516 £ 0.280174
0.454516 + 0.280174
0.454516 £ 0.280174
0.454516 + 0.280174

1.19904 £ 0.193646
2.09212 £ 0.933756
2.09212 £ 0.933756
2.09212 £ 0.933756
2.09212 £ 0.933756
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Table A37: Method variation results on the AssetWealth dataset.

Method

val MAE (])

val Interval Length ()

test Coverage (> 0.90)

test Prediction Rate (1)

Gaussian + Selective GMM
Gaussian + Selective GMM, k£ = 2
Gaussian + Selective GMM, k£ = 8
Gaussian + Sel. GMM, Spec. Norm

Gaussian + Selective kNN

Gaussian + Selective kNN, k = 5
Gaussian + Selective kNN, k& = 20
Gaussian + Selective kNN, L2

0.367501 4 0.0416437
0.367501 4 0.0416437
0.367501 4 0.0416437
0.354647 & 0.00973911
0.367501 4 0.0416437
0.367501 4 0.0416437
0.367501 4 0.0416437
0.367501 4 0.0416437

1.597 + 0.207599
1.597 + 0.207599
1.597 + 0.207599
1.55594 + 0.0421589
1.597 + 0.207599
1.597 + 0.207599
1.597 + 0.207599
1.597 + 0.207599

0.850824 4 0.047533
0.850232 = 0.0469534
0.85067 + 0.0456954
0.872742 4 0.0250168
0.852107 4 0.0474734
0.85256 + 0.0469571
0.851914 = 0.0460655
0.853365 4 0.0410864

0.93838 + 0.0170443
0.933687 4 0.0176348
0.932879 £ 0.0102523
0.941812 4 0.0101895
0.933586 £ 0.0203541
0.933232 4 0.02149
0.933636 £ 0.0200087
0.897149 £ 0.0162693

Table A38: Method variation results on the VentricularVolume dataset.

Method

val MAE ()

val Interval Length ()

test Coverage (> 0.90)

test Prediction Rate (1)

Gaussian + Selective GMM
Gaussian + Selective GMM, k = 2
Gaussian + Selective GMM, k = 8
Gaussian + Sel. GMM, Spec. Norm
Gaussian + Selective kNN
Gaussian + Selective kNN, £ = 5
Gaussian + Selective kNN, £ = 20
Gaussian + Selective kNN, L2

12.7238 +1.52197
12.7238 + 1.52197
12.7238 +1.52197
11.6311 =+ 0.483357
12.7238 +1.52197
12.7238 +1.52197
12.7238 4+ 1.52197
12.7238 +1.52197

51.566 £ 3.52739
51.566 £ 3.52739
51.566 £ 3.52739
45.5475 £ 0.747647
51.566 £ 3.52739
51.566 £ 3.52739
51.566 £ 3.52739
51.566 + 3.52739

0.752046 £ 0.0529087
0.745271 + 0.0582068
0.747625 £ 0.0584117
0.734907 + 0.00853342
0.735105 £ 0.0612413
0.735857 £ 0.0604531
0.734752 £ 0.0616982
0.740812 =+ 0.049802

0.707994 £ 0.0208741
0.790752 + 0.0307666
0.656583 £ 0.0258853
0.719279 + 0.0147984
0.911599 £ 0.0447475
0.916614 £ 0.0419073
0.909404 + 0.0469634
0.740439 £ 0.0222073

Table A39: Method variation results on the BrainTumourPixels dataset.

Method

val MAE ()

val Interval Length ()

test Coverage (> 0.90)

test Prediction Rate (1)

Gaussian + Selective GMM
Gaussian + Selective GMM, k = 2
Gaussian + Selective GMM, k = 8
Gaussian + Sel. GMM, Spec. Norm
Gaussian + Selective kNN
Gaussian + Selective KNN, £ = 5
Gaussian + Selective kNN, & = 20
Gaussian + Selective kNN, L2

21.0625 + 0.358012
21.0625 £ 0.358012
21.0625 £ 0.358012
22.0729 + 1.25273
21.0625 £ 0.358012
21.0625 £ 0.358012
21.0625 £ 0.358012
21.0625 £ 0.358012

93.6284 + 2.29916
93.6284 + 2.29916
93.6284 £ 2.29916
95.0605 + 3.40124
93.6284 £ 2.29916
93.6284 + 2.29916
93.6284 £ 2.29916
93.6284 + 2.29916

0.883515 £ 0.0138279
0.881874 + 0.0118346
0.880823 £ 0.01273
0.890506 + 0.0112498
0.891264 + 0.00734602
0.891103 + 0.00680399
0.891759 + 0.00804523
0.879639 £ 0.0084247

0.973576 £ 0.0187252
0.977863 £ 0.0145103
0.973417 £ 0.01856
0.9738 £ 0.00857087
0.947185 £ 0.0178434
0.949392 £ 0.0173229
0.94453 £ 0.0188456
0.981862 =+ 0.0068585

Table A40: Method variation results on the SkinLesionPixels dataset.

Method

val MAE (])

val Interval Length (1)

test Coverage (> 0.90)

test Prediction Rate (1)

Gaussian + Selective GMM
Gaussian + Selective GMM, k = 2
Gaussian + Selective GMM, k = 8
Gaussian + Sel. GMM, Spec. Norm
Gaussian + Selective kNN
Gaussian + Selective kNN, k =
Gaussian + Selective kNN, & = 20
Gaussian + Selective kNN, L2

105.417 £ 1.15178
105.417 £ 1.15178
105.417 £ 1.15178
107.531 £ 2.11824
105.417 £ 1.15178
105.417 £ 1.15178
105.417 £ 1.15178
105.417 £ 1.15178

535.139 =+ 215.446
535.139 £ 215.446
535.139 £ 215.446
607.435 £ 407.758
535.139 =+ 215.446
535.139 =+ 215.446
535.139 £ 215.446
535.139 & 215.446

0.821515 £ 0.0137705
0.825054 £ 0.0122698
0.815696 + 0.010454
0.821797 4 0.0350093
0.813027 £ 0.0306586
0.812763 =+ 0.0309198
0.812419 £ 0.0306294
0.808667 + 0.0112832

0.849579 £ 0.0206181
0.844799 £ 0.0191092
0.862683 + 0.0259293
0.837273 & 0.0205022
0.927047 + 0.00830718
0.928375 £ 0.0100103
0.929172 £ 0.0109976
0.831784 4 0.0181658

Table A41: Method variation results on the HistologyNucleiPixels dataset.

Method

val MAE ({)

val Interval Length ()

test Coverage (> 0.90)

test Prediction Rate ()

Gaussian + Selective GMM
Gaussian + Selective GMM, k = 2
Gaussian + Selective GMM, k = 8
Gaussian + Sel. GMM, Spec. Norm
Gaussian + Selective kNN
Gaussian + Selective kNN, k& = 5
Gaussian + Selective kNN, £ = 20
Gaussian + Selective kNN, L2

211.795 + 10.0239
211.795 4+ 10.0239
211.795 £ 10.0239
206.492 + 7.82601
211.795 £ 10.0239
211.795 £ 10.0239
211.795 + 10.0239
211.795 + 10.0239

1211.83 + 396.946
1211.83 + 396.946
1211.83 + 396.946
896.779 + 61.4921
1211.83 £ 396.946
1211.83 £ 396.946
1211.83 £ 396.946
1211.83 £ 396.946

0.59554 + 0.0956742
0.597998 =+ 0.094508
0.595718 =+ 0.0973458
0.65672 £ 0.0824111
0.608929 + 0.0805954
0.610025 + 0.0809455
0.607876 + 0.0817183
0.588514 + 0.0914286

0.90569 + 0.0453555
0.912836 =+ 0.0323147
0.943449 + 0.0409511
0.855668 + 0.0632114
0.846228 + 0.0482832
0.842258 + 0.046231
0.858491 + 0.0496696
0.975562 % 0.0190356

Table A42: Method variation results on the AerialBuildingPixels dataset.

Method

val MAE ({)

val Interval Length ()

test Coverage (> 0.90)

test Prediction Rate (1)

Gaussian + Selective GMM
Gaussian + Selective GMM, k = 2
Gaussian + Selective GMM, k = 8
Gaussian + Sel. GMM, Spec. Norm
Gaussian + Selective kNN
Gaussian + Selective kNN, k& = 5
Gaussian + Selective kNN, k£ = 20
Gaussian + Selective kNN, L2

217.877 4+ 1.72493
217.877 4+ 1.72493
217.877 £ 1.72493
220.763 £ 7.23119
217.877 £ 1.72493
217.877 £ 1.72493
217.877 £ 1.72493
217.877 +1.72493

929.562 + 47.6606
929.562 + 47.6606
929.562 + 47.6606
1014.77 £ 164.155
929.562 + 47.6606
929.562 £ 47.6606
929.562 + 47.6606
929.562 + 47.6606

0.76535 + 0.0388677
0.751721 £ 0.0454772
0.850213 £ 0.025791
0.817517 £ 0.0505544
0.651867 £ 0.0771154
0.654256 + 0.0771566
0.647779 £ 0.0795474
0.815075 £ 0.0278439

0.652082 =+ 0.0990489
0.634602 £ 0.122618
0.617738 £ 0.0879951
0.638149 + 0.046255
0.840103 + 0.0463989
0.846067 + 0.0456245
0.832596 £ 0.0542738
0.641851 4 0.11347
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ECG-Based Electrolyte Prediction:
Evaluating Regression and
Probabilistic Methods

Abstract

Imbalances in electrolyte concentrations can have severe consequences, but
accurate and accessible measurements could improve patient outcomes. The
current measurement method based on blood tests is accurate but invasive and
time-consuming, and is often unavailable for example in remote locations or
in an ambulance setting. In this paper, we explore the use of deep neural net-
works (DNNs) for regression tasks to accurately predict continuous electrolyte
concentrations from electrocardiograms (ECGs), a quick and widely adopted
tool. We analyze our DNN models on a novel dataset of over 290 000 ECGs
across four major electrolytes and compare their performance with traditional
machine learning models. For improved understanding, we also study the full
spectrum from continuous predictions to a binary classification of extreme con-
centration levels. Finally, we investigate probabilistic regression approaches
and explore uncertainty estimates for enhanced clinical usefulness. Our results
show that DNNs outperform traditional models but model performance varies
significantly across different electrolytes. While discretization leads to good
classification performance, it does not address the original problem of continu-
ous concentration level prediction. While probabilistic regression has practical
potential, our uncertainty estimates are not perfectly calibrated. Our study is
therefore a first step towards developing an accurate and reliable ECG-based
method for electrolyte concentration level prediction—a method with high po-
tential impact within multiple clinical scenarios.

1 Introduction

Electrolytes such as potassium or calcium influence the water and acid-base
balance in the human body and ensure the proper functioning of muscles, brain
and heart [1, 2]. Electrolyte imbalances are frequently observed in hospitalized

VIII-1



Paper VIII — ECG-Based Electrolyte Prediction

patients, with abnormal potassium levels affecting around 25 % of them [3, 4].
These imbalances can lead to severe heart conditions, such as arrhythmia and
cardiac arrest [5].

Electrolyte imbalances are challenging to detect as symptoms often do not ap-
pear until the imbalance is severe. Blood tests provide accurate measurements
of electrolyte concentrations but are invasive, slow, and inaccessible from re-
mote locations. Electrolytes have known but complex relationships with the
electrocardiogram (ECG) since they directly influence heart function [6]. An
ECG measures the electrical activity of the heart, it is low-cost and a widely
available routine diagnostic tool for heart-related conditions in primary and
specialized care. Developing an automated method to extract accurate elec-
trolyte concentration measurements directly from the ECG could provide non-
invasive, convenient, and rapid electrolyte monitoring for a large population.
Such ECG-based methods would be particularly useful in rural areas relying on
telehealth setups, or in an ambulance setting where blood laboratory analysis
equipment typically is unavailable.

Computer-based automatic processing of ECGs is an established technology
[7]. Recently, deep neural networks (DNNs) have shown promise as an alter-
native to traditional methods, which use hand-crafted features in combination
with simple models, in the classification of cardiac diseases with known ECG
patterns [8, 9, 10]. DNNs have also demonstrated success in detecting patterns
that are not easily identifiable by traditional electrocardiographic analysis. For
instance, models can detect myocardial infarction in ECG exams without ST-
elevation [11] and predict the risk of mortality [12, 13], atrial fibrillation [14,
15], and left ventricular dysfunction [16] directly from the ECG. Most of these
models are predictive of outcomes even for seemingly normal ECGs.

DNNs have been extensively studied for ECG-based classification problems
and have consistently outperformed traditional machine learning models [15,
17], prompting interest in using DNNs for automatic electrolyte prediction.
However, since electrolyte concentration levels are continuous, the prediction
is naturally formulated as a regression problem. While there are several regres-
sion methods using DNNs in the general literature [18, 19, 20, 21, 22], few
have been applied to ECG-based electrolyte prediction. The most common
and simple method of DNN-based regression is known as deep direct regres-
sion, in which a DNN directly predicts continuous values by minimizing the
mean-squared error between predicted and observed values [23]. In contrast,
earlier studies on electrolyte prediction either used manually engineered ECG
features combined with simple models [24, 25], focused on classifying abnor-
mal hypo (low) and hyper (high) concentration levels [26, 17], or discretized
concentration levels and applied an approach similar to ordinal regression [27].
Moreover, [27] only studied the prediction of a single electrolyte (potassium).
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In this work, we investigate the feasibility of utilizing DNNs to predict the
continuous concentration levels of electrolytes directly from ECGs. Initially,
we employ the deep direct regression approach and evaluate its regression ac-
curacy for four major electrolytes. Our analysis reveals that the performance
of the DNN model varies considerably across different electrolytes. Further-
more, we compare the performance of DNNs with that of traditional models,
such as Gradient Boosting and Random Forest, and demonstrate the superior
performance of DNNs in ECG-based regression. To perform this analysis, we
utilize a novel large-scale dataset comprising over 290 000 ECGs.

In cases when deep direct regression fails to accurately predict the continuous
level, we study the prediction problem in more detail. We discretize the elec-
trolyte concentration level and train classification models, with an increasing
number of classes, studying the full spectrum: from continuous prediction to
a binary classification of extreme concentration levels. This provides insights
into the inherent difficulty of the prediction problem and enables us to extract
as fine-grained predictions as possible, for different electrolytes. If the direct
regression model learns a clear relationship between inputs and targets, we also
extend the model to a probabilistic regression approach [28], which provides
uncertainty estimates for the predictions and enhances the clinical usefulness
of the regression model. We evaluate these uncertainty estimates on both in-
distribution and out-of-distribution data.

Our main contributions can be summarized as follows:

» We utilize a novel large-scale dataset of more than 290 000 ECGs col-
lected from adult patients who visited emergency departments in Swedish
hospitals.

* We train deep direct regression models for ECG-based prediction of con-
tinuous electrolyte concentration levels, and demonstrate that DNNs out-
perform traditional machine learning models on this task.

» We investigate probabilistic regression approaches to provide continuous
predictions with uncertainty estimates.

* We evaluate our regression models on four important electrolytes (potas-
sium, calcium, sodium, and creatinine'), and find notable performance
variations.

» We discretize the electrolyte concentration levels and train classification
models, studying the full spectrum from continuous prediction to binary
classification.

Generalizable Insights about Machine Learning for Healthcare We find
that accurate ECG-based prediction of electrolyte concentration levels is in-

'Potassium, calcium and sodium are electrolytes, while creatinine is a blood biomarker. In this
study, however, we refer to creatinine as an electrolyte for simplicity.
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herently more difficult for some electrolytes than others, despite not having
prior expectations of clear performance differences. Retrospectively, we can
justify why in our context potassium levels can be predicted better than e.g.
calcium levels—yielding insights into the manifestation of electrolytes on the
ECG. Consistent with prior work on ECG-based classification tasks, our re-
sults demonstrate that DNNs outperform traditional machine learning models,
also in our regression setting. Therefore, while DNN models generally are
more complex and less interpretable, their superior performance is a strong ar-
gument for their use also within medical domains. Moreover, by simplifying
the original problem via discretization of the electrolyte concentration levels,
we find that good classification accuracy can be achieved even in cases when
regression models struggle. By progressively increasing the number of dis-
cretized classes, we also demonstrate how to extract as fine-grained predictions
as possible. This is a general approach that might be suitable for other prob-
lems which are naturally formulated as regression tasks, within a wider range
of applications. Finally, we extend our direct regression model to the prob-
abilistic regression approach and analyze the resulting uncertainty estimates,
finding that they are not particularly well-calibrated. This calls for further in-
vestigations into improved uncertainty estimation methods in order to achieve
the ultimate goal of accurate, reliable and clinically useful regression models.

2 Background

We formulate ECG-based electrolyte prediction as a regression problem and
explore different regression approaches. We also study the prediction prob-
lem further by discretizing the concentration levels and training models on the
simplified classification task.

2.1 Regression & Uncertainty Estimation

The goal in a regression problem is to predict a continuous target y € R for
an input x, given a training dataset D = {x;, y;}/_; of n data points. This is
achieved by training a model my with parameters 6 such that a loss function is
minimized on D. In the common deep direct regression approach, the model is
a DNN outputting continuous predictions, § = my(z), using the mean-squared
error (MSE) as loss function. These predictions do not capture any measure
of uncertainty. In medical applications, where predictions might impact the
treatment of patients, this lack of uncertainty is especially problematic.

Probabilistic regression aims to solve this problem by estimating different types
of uncertainties [29, 28, 30]. (1) Aleatoric uncertainty captures irreducible am-
biguity from the experiment itself. One example is noise from a measurement
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device. (2) Epistemic uncertainty refers to a lack of knowledge and is therefore
reducible. Out-of-distribution (OOD) data is one example where epistemic un-
certainty is expected to be high.

Aleatoric uncertainty can be estimated by explicitly modelling the conditional
distribution p(y|x). Assuming a Gaussian likelihood leads to the parametric
model p(y|z; 0) = N (y; po(x), o3 (x)), where the DNN my outputs both the
mean p and variance 02, i.e. mp(x) = [pg(z) oZ(x)]". The mean is used
as a target prediction, § = ug(x), whereas the variance o3 (z) is interpreted as
an estimate of input-dependent aleatoric uncertainty. The DNN is trained by
minimizing the corresponding negative log-likelihood — 7" | log p(y;|x;; 6).

This approach does however not capture epistemic uncertainty. One way to
add this uncertainty is by treating the model parameters € according to the
Bayesian framework [31] and learning a posterior probability distribution over
the parameters. Ensemble methods [32, 30] constitute a simple approach to
estimating epistemic uncertainty. Multiple models are trained and the uncer-
tainty is estimated by the variance of the prediction over all models. Ensemble
methods usually improve the regression accuracy of the model and have been
shown to be highly competitive baselines for uncertainty estimation methods
[33, 34]. Another common method is the Laplace approximation [35], which
approximates the posterior distribution p(0|D) with a Gaussian,

p(0]D) =~ N (6; Omar, ),

where the inverse of the covariance matrix ~! = —V2logp(D, 0)|gy, is
the negative Hessian matrix, evaluated at the maximum-a-posteriori estimate
Omap. Laplace approximations can be applied post-hoc to a pre-trained model
with reduced computational complexity [36, 37].

2.2 Simplifying Regression via Discretization

If the accurate prediction of the continuous target y € R is unachievable or not
required, a regression problem can be simplified into a standard classification
problem by discretizing the targets. Specifically, the target range is divided
into k intervals and each target y is assigned to the respective interval [38].
The model now outputs a distribution over & classes and predictions are made
by the class with maximum probability.

Usually, the Cross-Entropy (CE) loss is used to train the model, which can
however lead to rank inconsistency of the original continuous problem. This
implies that for a predicted class ¢ corresponding to a certain target interval,
the probability for the classes corresponding to neighbouring intervals do not
necessarily decrease monotonically away from the predicted class. To address
this issue, [39] proposed rank-consistency ordinal regression. The output of
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the model is changed to denote the probability that the target y is larger than or
equal to the lower bound of the corresponding interval of class j. The model
is trained with binary CE loss, and class predictions are computed as § =

k
1+ 3751 po(x);, where pg(2)j = Ty, (2),>0.5-

2.3 Clinical Relevance

In an in-hospital scenario, blood measurement with laboratory analysis is the
gold standard to accurately and reliably determine the electrolyte concentration
levels of patients. However, there are multiple scenarios where ECG-based
prediction models are desired.

First, in the ambulance setting, there is typically no access to onboard blood
laboratory analysis equipment but it is possible to acquire ECGs. Many coun-
tries apply a telehealth setup in this scenario and send the ECGs to a coronary
care unit for reading and decision-making. If the patient in the ambulance
has presented with arrhythmia, which is potentially lethal, it is important to
quickly identify its cause. If electrolyte disturbances could be estimated, and
identified as the cause of the arrhythmia, then life-saving treatment could be
started directly in the ambulance. For example, an insulin-glucose infusion, an
intravenous calcium injection, or an inhalation of a beta-2-agonist are all treat-
ments for hyperkalemia (high potassium) that could be administered. Onboard
automated ECG analysis would be highly useful in this scenario.

Second, in rural areas without specialists, a remote setting with telehealth care
centres is built up. One such example is the Telehealth Network of Minas
Gerais, Brazil [40] which receives up to 5000 ECGs per day. In many lo-
cations, obtaining an ECG may be easier than obtaining a blood sample for
electrolyte analysis. Our model could provide crucial care for these patients
which would otherwise not be possible at all.

Third, in an in-hospital setting, an ECG-based electrolyte prediction could
be useful for monitoring the treatment of hyperkalemia or hypernatremia
(high sodium). For hyperkalemia, monitoring that potassium is decreased fast
enough is an important objective; for hypernatremia, monitoring that sodium
is decreased slowly enough (to prevent potentially lethal brain edema due to
osmosis) is crucial. A real-time ECG-based prediction could replace frequent
blood draws in these scenarios.

Extending the prediction model with uncertainty estimation increases its clin-
ical usefulness. In Section 2.1 we defined two types of uncertainty, each of
which plays a crucial role. (1) Aleatoric uncertainty captures inherent ambigu-
ity in the data itself. For example, due to measurement noise, it is inherently
more difficult to determine the electrolyte levels for some ECGs than for others.
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Hence, an accurate prediction of concentration level might not be possible for
some ECGs. A model that properly captures aleatoric uncertainty could auto-
matically detect such cases, enabling doctors to take appropriate action such as
acquiring a new ECG or asking for blood test analysis instead. If a model cap-
tures (2) epistemic uncertainty, it could detect cases when the ECG being anal-
ysed during clinical deployment is out-of-distribution compared to the training
data. Failing to detect such cases could lead to highly incorrect model predic-
tions, with potentially catastrophic consequences, since the accuracy of DNN
models can drop significantly on out-of-distribution examples [41, 42].

3 Related Work

Most previous work on ECG-based electrolyte prediction relies on hand-
crafted ECG features. These are specific characteristics such as the time be-
tween two waves, and the amplitude or slope of a wave. [24] were the first to
manually develop a relation between such features and electrolyte concentra-
tions. More recently, [43, 44, 25] rely on hand-crafted features but automati-
cally fit the model parameters to data. Their performance is however limited.
DNN s offer a different approach by jointly learning features and predictions.
Convolutional neural networks (CNNs) have shown promising results for clas-
sifying different ECG patterns [8, 9, 10]. For electrolyte prediction, [26] used
an 11-layer CNN to classify hyperkalemia. [27] were the first to develop a
DNN for regression on potassium, using an approach similar to ordinal regres-
sion by discretizing the model outputs. Hence, despite recent work on ECG-
based predictions for electrolytes, it remains unclear if the common deep direct
regression approach can be applied to accurately predict electrolyte concentra-
tion levels from ECGs.

Little work has gone into deep prediction models for electrolytes other than
potassium. [17] studied potassium, calcium and sodium, but they only consid-
ered the simplified problem of classifying hypo and hyper conditions. We are
the first to study these electrolytes in the original problem setting of regressing
continuous concentration levels. Moreover, we also consider the prediction of
creatinine. We further apply probabilistic regression methods for uncertainty
estimation. Closest to this probabilistic setting is [45], which proposed dataset
shifts and compared the change of uncertainty for different models but concen-
trated exclusively on classification problems.
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Table 1: Characteristics of our datasets.

Potassium Calcium Sodium Creatinine

Patients 165508 79577 163610 166 908
ECG recordings 290 889 125970 288891 295606
% Male 49.38 48.71 49.07 49.22
Age mean 61.26 60.47 61.41 61.34

sd 19.61 20.03 19.69 19.61
Minutes diff (abs) mean 16.28 12.68 15.92 16.24

sd 15.04 14.05 1491 15.01
Concentration mean 3.99 2.29 138.93 90.55

sd 0.50 0.13 3.82 71.00

4 Dataset

We use data from adult patients attending six emergency departments in the
Stockholm area, Sweden, between 2009 and 2017. The ECG recordings are
linked through unique patient identifiers to blood measurements of electrolyte
concentration levels of potassium, calcium, sodium and creatinine, extracted
from electronic health records with laboratory measurements. Inclusion filters
are applied to only include data where the ECG and blood measurement are
acquired within £60 minutes. Larger time frames would enable more patients
in our study, but at the cost of lower label quality.

Standard 10-second 12-lead ECGs are recorded, where we use the 8 indepen-
dent leads since the remaining ones are mathematically redundant. The data is
sampled, producing an ECG trace of size leads x samples. We pre-process
all ECG recordings to a sampling frequency of 400 Hz and pad with zeros to
obtain 4 096 samples. We further apply a high-pass filter to remove biases and
low-frequency trends, and finally, remove possible power line noise using a
notch filter. The ground truth electrolyte concentration levels are obtained by
blood tests. Details on pre-processing are provided in Appendix A.3.

We split our datasets into training, validation and test sets. 70 % of the patients
are used for model development including training and validation. The remain-
ing 30 % are split into 20 % for a random test set, where the recorded ECGs
overlap in time with the development set. The last 10 % are used for a tempo-
ral test set, where the ECGs do not overlap in time with the development set,
which is used to observe changes in recordings over time. We removed patients
from the temporal test set who already had recordings in other datasets to avoid
data leakage. In the main paper, we present results on the random test set with
the exception of Table 3, while complementing results for the temporal test set
are in the appendix.

We obtain four datasets—one for each electrolyte. The number of patients
ranges between 79 577 and 166 908, with between 126 970 and 295 606 ECGs
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in total, see Table 1 for more characteristics. Sometimes multiple blood mea-
surements and multiple ECGs are recorded within the selected £60 minute
time frame. We select the median electrolyte value and assign it to all ECGs
for training. We consider multiple ECGs during training as a form of data aug-
mentation. In the validation and test sets, we use only the first ECG. Details
and comparisons with datasets from literature are in Appendix A.2.

5 Methods: Models & Training Procedures

We train regression and classification models for each electrolyte. The study
has been approved by relevant ethical review authorities; details will be pro-
vided upon acceptance.

Baseline Comparison We first conduct a baseline performance comparison
of our DNN model with different machine learning models. The raw ECG
trace is of size leads x samples (i.e., 8 x 4096), yielding 32 768 features. For
instance for potassium, we have 290 889 ECG traces in our dataset. In contrast
to training deep models, most traditional machine learning models use the full
dataset in every iteration of training. However, given our dataset, this would be
computationally infeasible. Therefore, we conduct two types of baseline com-
parisons. First, we reduce the feature dimension to ensure computational fea-
sibility. The reduced data are applied to traditional machine learning models,
namely linear regression, Gradient Boosting [46], and Random Forest [47]. To
reduce the feature dimension, we employ principal component analysis (PCA)
as a standard pre-processing step for the raw ECG traces. While PCA-based
pre-processing is established for ECGs, it is typically applied to individual
ECGs separately [48]. Given our large dataset, this approach would however
be very computationally expensive. Thus we instead perform PCA on the en-
tire dataset by vectorizing the 8 x 4096 features and then reducing them. The
reduced dimension is set to 256, based on the eigenvalue distribution shown
in Figure A3, which explains approximately 60 % of the variance. However,
this dimensionality reduction might still remove important information from
the raw data. Hence, we perform a second baseline comparison, where we
keep all features but ensure computational feasibility by training in a batch-
wise manner—the usual training strategy for deep networks. In this scenario,
we compare with batch-wise linear regression as well as a small 3-layer multi-
layer perceptron (MLP) on the raw ECG input. The batch-wise training is done
equally to our DNN.

Model Architecture For the choice of DNN architecture, reviews note that
convolutional models such as ResNets are the dominant deep architecture for
ECG-based prediction modelling [49, 50]. The authors in [10] also exper-
imented with vectogram linear transformation for dimensionality reduction,
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LSTMs and a VGG convolutional architecture, but used a ResNet. Hence,
we use the ResNet backbone network from [10, 13] as a feature extractor in all
DNN models. Our methodological approach is however model-agnostic and
any architecture with high performance could be utilized instead.

Model Training For deep direct regression, the DNN my consists of the
ResNet backbone and a network head that outputs target predictions, § =
mg(z). The DNN is trained from scratch using the MSE loss. During train-
ing, we normalize the targets y with z-transformation to obtain a similar target
distribution across all electrolytes. We then discretize the targets into % inter-
vals, and train both classification and ordinal regression models, as described
in Section 2.2. The network head of the direct regression DNN is modified to
output k£ values instead. For ordinal regression, we train using binary CE loss
and for classification using the CE loss. All models are trained for 30 epochs
and the final model is selected from the best validation loss. If not specified
otherwise, we train each model with 5 different seeds and report the mean and
standard deviation (sd) for all results.

For probabilistic regression, we create a Gaussian model N (y; pg(z), 03 (z))
by extending the direct regression DNN with a second network head that out-
puts the variance o3 (). The model is trained by minimizing the correspond-
ing negative log-likelihood. We train an ensemble of 5 Gaussian models, and
then extract three different uncertainty estimates: (1) Aleatoric uncertainty is
given by the average predicted variance () (denoted aleatoric Gaussian).
(2) Epistemic uncertainty is computed as the variance of the predicted mean
o(z) over the 5 ensemble members (denoted epistemic ensemble). (3) We ad-
ditionally define an epistemic uncertainty by fitting a Laplace approximation
after training using the Laplace library [37] (denoted epistemic Laplace).
The approximation is fit to the last layer of the mean network head by approx-
imating the full Hessian. We report the average epistemic Laplace uncertainty
over the 5 ensemble members.

The code is implemented in PyTorch [51] and models are trained on a single
Nvidia A100 GPU. Further training details are in Appendix B. Our complete
implementation code and the trained models are publicly available at https:
//github.com/philippvb/ecg-electrolyte-regression.

6 Results

In this section, we start by discussing the results obtained through deep direct
regression. Following that, we compare classification and ordinal regression
in the context of discretized regression. Finally, we focus on potassium for
probabilistic regression.
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Table 2: Regression comparison with baseline models on the random test set.

Model MSE MAE
Feature reduction with Gradient Boosting 0.215 0.340
PCA to 256 dims. Random Forest 0.220 0.346
Linear Regression 0.220 0.344
Batch-wise training Linear Regression 0.215 0.338
3-layer MLP 0.218 0.346
ResNet 0.152 0.285
< Potassium Calcium
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Figure 1: Regression scatter plot: The diagonal depicts the optimal fit and the point
density is indicated by colour (yellow: high, blue: low) from a Gaussian KDE.

6.1 Deep Direct Regression

Baseline Comparison We validate our ResNet architecture with baseline com-
parisons, using PCA-based feature reduction or batch-wise training to enable
computational feasibility. The results obtained for potassium on the random
test set are presented in Table 2. It is worth noting that the ground truth re-
gression targets for potassium have a variance of 0.220. Simply predicting the
mean target value for all inputs (resulting in an MSE equal to the variance)
would thus achieve similar performance to all baseline models, indicating that
the baselines fail to capture a clear relationship between ECG and potassium
concentration. This behaviour is independent of the method used to ensure
computational feasibility. In contrast, our DNN model achieves a significantly
lower MSE and mean absolute error (MAE), implying that it has learned the
true underlying relationship effectively. DNNs thus clearly outperform tradi-
tional machine learning models on this regression task.
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Table 3: Main regression results: Results of our deep direct regression model on both
the random and temporal test set, for all four electrolytes. Targets are not normalized.

Random test set Temporal test set
MSE (sd) MAE (sd) MAE (sd)
Potassium 0.152 (0.026) 0.285 (0.015) 0.262 (0.013)
Calcium 0.015 (2e—4) 0.088 (5e—4) 0.106 (3e—4)
Sodium 12.59 (0.111) 2.512(0.016)  2.390 (0.009)

Creatinine 3719 (86.04) 26.69 (1.118) 24.50 (1.298)

Main Results Figure 1 depicts the results of our deep direct regression model
for potassium and calcium, plotting predictions § against targets y. For potas-
sium, the data points concentrate along the diagonal, indicating an overall good
fit. For calcium, the predictions are horizontally aligned, meaning that the
model mainly predicts the mean target value of the train dataset for all inputs z.
Corresponding plots for sodium and creatinine are in Figure A4 in Appendix C.
Sodium reflects the undesirable behaviour of calcium. While creatinine shows
an overall positive trend, the model seems to suffer from the high variance for
higher target values, making predictions for these values noisy. Since the main
behaviour is captured by potassium and calcium, we will focus on them in the
main text. The complete results for all four electrolytes are in Appendix C.

Quantitative results on both the random and temporal test set are presented in
Table 3. There, the MSE and MAE do not directly reflect the performance
difference between calcium and potassium observed in Figure 1, as calcium
shows significantly lower errors. To understand these opposing results, we in-
vestigate the dataset distributions. The variance in the ground truth electrolyte
levels is significantly lower for calcium with 0.016 compared to potassium
with 0.220. Thus, predicting the mean training target value for calcium will
result in a lower MSE without learning the relationship between input and tar-
get. Computing errors with normalized targets give MSE values which better
reflect the performance difference, as Table A2 shows.

Returning to the results in Table 3, we do not observe a significant drop in
performance when evaluating the temporal test set. In fact, the MAE is often
slightly lower than for the random test set. This is the first indication that our
model is agnostic to real-world data collection changes and distribution shifts.
Other works that report regression performance of potassium concentrations
obtain MAEs of 0.53 [27] and 0.50 [43], compared to which our model obtains
superior performance.

Stratification To further analyze our results, we stratify them according to the
age and sex of the patients in Figure 2 (left). We observe that our results are
independent of sex, but that the MAE has a positive correlation with patient age.
Comparing with Figure 2 (right) we see that this correlation is largely expected,
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Figure 2: Stratified regression results: Left: MAE of regression task stratified for
different electrolytes by age and sex. Right: Corresponding standard deviations of
the target values stratified in a similar fashion.

since the variance of the ground truth target values also increases with age.
Correctly predicting the electrolyte concentration levels is thus inherently more
difficult for older patients.

6.2 Classification & Ordinal Regression

We compare classification and ordinal regression in the simplified setting with
discretized targets y. We consider increasingly fine-grained predictions by
varying the number of intervals k. The class intervals are defined for each
electrolyte separately: For k=3 classes, we define the lower and upper in-
terval bounds by i + 20. For k>3 classes we add evenly spaced interval
bounds in between the extreme bounds. For binary classification (k=2) we
consider the hypo/hyper definitions from [17]>. For evaluation, we compute
Receiver-Operating-Characteristic (ROC) curves for the cumulative classifica-
tionp(y <1),i=1,...,k, leading to k£ — 1 individual curves.

Figure 3 shows the area under the macro averaged ROC (AUmROC) for a dif-
ferent number of classes k. The AUmROC simply averages the obtained k — 1
AUROC values. For all &, the prediction performance on calcium is worse
than on potassium. When increasing the number of classes, we observe a drop
in AUmROC which implies that fine-grained predictions are increasingly dif-
ficult. This effect is also stronger for calcium. Together with Figure 1, these
results clearly suggest that accurate prediction of concentration levels is inher-

2Calcium: 2.0/2.75; potassium: 3.5/5.5; creatinine: 3.5/5.3; sodium: 130/150. Values in mmol/l.
For creatinine, we default to u + 20 as [17] do not consider creatinine.
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Figure 3: Macro ROC for varying number of classes: O: Ordinal regression; C: clas-
sification models. For 2 classes we average the hypo and hyper results (see Table 4).

Table 4: Binary classification AUROC.

Potassium (Bounds 3.5/5.5 mmol/l)

n Data Hypo Hyper
Ours 290 889 0.809 (0.003) 0.892 (0.009)
[27] 66321 0.926 0.958
[26] 2835059 N/A 0.865
[17] 83449 0.866 0.945
Calcium (Bounds 2.0/2.75 mmol/l)
Ours 125970 0.779 (0.012) 0.660 (0.036)
[17] 83449 0.901 0.905

ently more difficult for calcium than for potassium. Comparing classification
against ordinal regression in Figure 3, the latter decreases less in AUmMROC
for more classes. In this discretized regression setting, ordinal regression can
thus improve performance compared to standard classification models.

We now convert the class predictions into electrolyte concentration levels by
mapping to the mean of the predicted class interval and computing the error to
the continuous targets. The results in Figure AS show that the MAE decreases
with more classes for potassium but stays mostly constant for calcium. How-
ever, the MAE is never lower than the corresponding direct regression MAE
from Table 3. While discretization thus can lead to good classification perfor-
mance, it does not help solve the original problem of predicting continuous
concentration levels.

For binary classification, we compare with results from literature in Table 4.
The comparisons are not entirely fair since data collection and dataset size is
different between all works. For potassium, our model reaches a slightly lower
AUROC for both imbalances than 2 out of 3 works from the literature. For
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calcium, [17] reach a significantly higher AUROC, indicating that specialized
models might outperform our approach which relies on a standard ResNet.

6.3 Probabilistic Regression

Here, we focus on potassium as the only electrolyte for which direct regression
learns a clear relationship between inputs and targets. Figure 4 (left) shows
the three uncertainty estimates defined in Section 5, for different target levels.
Aleatoric Gaussian uncertainty fits the noise in the predictions quite well, since
it increases towards the extremes, where predictions become noisy and the
error increases. In comparison, both epistemic variances are smaller, which
is expected due to the large size of the underlying training dataset. Epistemic
Laplace is the smallest and almost constant. Epistemic from the ensemble
increases towards the extreme values, similar to the aleatoric uncertainty.

Meaningful uncertainty estimates should correlate with the error — predictions
with high error should also have high uncertainty. The sparsification plot in
Figure 4 (right) shows that removing the most uncertain points lowers the MAE
monotonically, as expected. This effect is strongest for aleatoric Gaussian un-
certainty. However, the calibration plot in Figure A7 shows that the uncertain-
ties are not particularly well-calibrated. Aleatoric Gaussian uncertainty has
the highest correlation with the MSE, see Table AS. The correlation can be
increased by adding epistemic ensemble uncertainty.

To further measure uncertainty, we perform OOD experiments similar to [45].
We first add Gaussian noise to the ECG traces, controlling the strength with
the signal-to-noise ratio (SNR). In Table 5 we observe that with increasing
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Table S: Results for the OOD experiments.

Baseline SNR=10 SNR=1
MAE 0.304 (0.021) 0.330 (0.016) 0.368 (0.026)

Aleatoric Gaussian 0.389 (0.012)  0.399 (0.012)  0.480 (0.078)
Epistemic Ensemble ~ 0.121 (0.048)  0.149 (0.041)  0.184 (0.075)
Epistemic Laplace 0.022 (0.003)  0.028 (0.009)  0.049 (0.031)

noise both the MAE and all uncertainty measures rise. This indicates that each
uncertainty by itself'is a useful indicator for this kind of OOD data. As a second
experiment, we randomly mask a proportion of each ECG trace. The results
for this experiment are provided in Table A6 and indicate that this type of OOD
data is not detected by our uncertainty quantification.

7 Discussion

Challenges in Predicting Calcium Levels The varying performance of our
models across electrolytes, see for instance Figure 1, requires discussion. The
difficulty in predicting calcium levels in contrast to potassium levels can be
explained with their manifestation in the ECG. There is a known relationship
between both electrolyte levels and a change of the ECG, which for calcium is
revealed mainly in a change of the QT interval [52, 53]. The range of values
for calcium is however very narrow since extreme values can be lethal and
it thus is tightly regulated by many mechanisms in the human body. In our
dataset, about 95 % of the values are in the range 2.29 4+ 0.26, see Table 1. The
electrophysiological manifestation of this change in concentration level could
be negligible, as Figure 2 in [54] indicates. Further, the calcium dataset size
is less than half that of potassium, thus the number of patients with extreme
calcium values could be insufficient to predict those reliably.

Interlinked Effects of Electrolytes The electrophysiological effects of potas-
sium, calcium, sodium and creatinine are closely interlinked. For example,
extracellular hypo- and hyperkalemia (potassium) levels promote cardiac ar-
rhythmias, partly because of direct potassium effects, and partly because the in-
tracellular balances of potassium, sodium and calcium are linked. Thus, hypo-
and hyperkalemia directly impact sodium and calcium balances. Finally, cre-
atinine levels can signify renal disease that can lead to hyperkalemia. This
complex relationship between the studied electrolytes, together with the sig-
nificantly better regression results achieved for potassium, could indicate that
the summed electrophysiological effects are most tightly linked to potassium
concentration. However, due to the known connection of calcium to the ECG,
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it is unclear if the combined electrophysiological effects could also be linked
to calcium if we had a similar dataset size as for potassium.

Limitations The primary focus of our work is to develop a methodology for
performing regression in a medically realistic setup, rather than improving the
model itself. Despite our model outperforming existing approaches, we ob-
served that our model did not perform as well as some reference work for bi-
nary extreme value classification. Nevertheless, it is challenging to compare
our results with those of other works due to differences in problem definition,
such as the time interval between ECG and blood measurement. Therefore,
we cannot definitively conclude that our model underperforms in this specific
setting. Moreover, we should note that our model is based on certain assump-
tions, such as assigning ground-truth electrolyte concentration values to ECGs,
which may introduce noise into our dataset. Further work still lies in improv-
ing the calibration of our uncertainty quantification for which we present a first
step in the setting of ECG-based regression.

& Conclusion

We trained deep models for direct regression of continuous electrolyte con-
centration levels from ECGs. While the model for potassium performed quite
well, it struggled with the three other electrolytes. Simplifying the problem to
binary classification, of clinically critical low or high levels, indicated that also
those electrolytes for which the direct regression model struggled can achieve
good classification performance. Defining more classes, for increasingly fine-
grained predictions, we observed a sharp performance drop for electrolytes
other than potassium. Our results thus strongly suggest that accurate ECG-
based prediction of concentration levels is inherently more difficult for some
electrolytes than for others. Future work should study this problem for an even
larger set of electrolytes, and explore the possibility of combined models for
all electrolytes due to their medial interconnection.

We also extended our deep direct regression model to the probabilistic re-
gression approach and carefully analyzed the resulting uncertainty estimates.
While especially the aleatoric uncertainty demonstrated potential practical use-
fulness e.g. via sparsification, the uncertainty estimates are not particularly
well-calibrated. To achieve the ultimate goal of accurate, reliable and clinically
useful prediction of electrolyte concentration levels, future work investigating
possible approaches for improved uncertainty calibration is thus required.
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Appendix

A Dataset

A.1 Clarification of Electrolyte Definitions

We note that potassium, calcium and sodium are by definition electrolytes but
creatinine is an abundant blood biomarker. For ease of reading descriptions,
we denote creatinine as an electrolyte in this study. The reason to include cre-
atinine is the availability of large amounts of data and the general medical in-
terest in its predictions. In some figures and tables in this appendix, creatinine
is denoted “pcreatinine”.

A.2 Dataset Characteristics

The characteristics of our four datasets are given in Table 1. More generally a
population of emergency room patients with electrolyte imbalances has char-
acteristics as described in [55]. We include data from all-comer patients to
the emergency room with > 18 years old with the only restriction that there
is a blood biomarker test and ECG collected within 60 minutes. We have a
varying number of patients in each dataset because not all electrolyte concen-
tration values are available for all patients. Note that we use an inclusion filter
of £60 minutes between ECG and blood measurement. We can compare our
datasets with related work from the literature:

* [27] use 66321 ECG recordings from 40 180 patients and related potas-
sium concentration in a time frame of £60 minutes.

* [26] use 2835059 ECG recordings from 787 661 patients and related
potassium concentrations. The authors develop their model on 60 %(=
449 380) of the patients. All ECGs were recorded within 4 hours before
potassium measurements.

* [17] have 92 140 patients, whereof 48 356 patients were used for model
development with 83449 ECGs. The study considered potassium,
sodium and calcium within +30 minutes of ECG recordings.

We analysed our datasets in more detail to observe possible causes of errors or
shortcuts for our model. In Figure A1 we show histograms of age, recording
year and the time difference between ECG recording and blood measurement.
In Figure A2 we show the distribution of electrolyte concentrations for all four
electrolytes, which shows a Normal distribution for all electrolytes except for
creatinine which is skewed towards large values. In order to validate our in-
clusion filter of £60 minutes, we analyze the concentration of electrolytes vs
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Figure Al: Histogram of metadata age (top left), recording year (top right) and min-
utes difference between ECG recording and blood measurement (bottom) for our four
datasets.

the time difference and observe no clear change of concentration value over
time. A similar analysis is done for age and sex. Here, we observe that older
patients tend to have more extreme electrolyte concentration values for all four
electrolytes.

A.3 Pre-Processing

For the high-pass filter to remove the baseline (trends and low frequencies),
we use an elliptic filter with a cut-off frequency of 0.8 Hz and an attenuation
of 40 dB which is applied to the forward and reverse direction to avoid phase
distortions. We additionally include a notch filter after observing that some
ECGs are distorted by power line noise. The notch filter removes the 50 Hz
with a quality factor of 30. Also, this filter is applied to the forward and reverse
directions for the same reason. We use the pre-processing from the public
library github.com/antonior92/ecg-preprocessing.

For the traditional machine learning methods, which we compare in Sec-
tion 6.1, we further apply Principal Components Analysis (PCA) to reduce
the dimensionality of the data. Here, we first concatenate all leads to geta 1D
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Figure A2: Histogram of the electrolyte concentration values for our four datasets.

signal of length leads - samples = 8 - 4096 = 32768. Then we fit PCA on
our train dataset. We choose the number of principal components based on
the eigenvalues in Figure A3. We see that the eigenvalues decrease fast and
start to converge between 200 and 300, which is why we choose to use 256
components.

B Training Details

B.1 Network Architecture

We use a modified ResNet which was first developed in [10], and later also in
[13], which also provides a public GitHub repository: https://github.
com/antonior92/ecg-age-prediction. We adjust the last linear
layer of the model for the different tasks, for example, different number of
outputs for classification.
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Figure A3: Eigenvalues of PCA components fit on train set. We show the first 512
eigenvalues of possible 8 - 4096 = 32 768 ones. We choose to reduce the dimension-
ality of our signal to 256 as it covers most information according to this figure.

Table Al: Hyperparameters for training the DNNs.

Hyperparameter Value

optimizer Adam

maximum epochs 30

batch size 32

initial learning rate 1073

learning rate scheduler ReduceLROnPlateau
patience 7

min. learning rate 1077

learning rate factor 0.1

B.2 Hyperparameters

We use the default training hyperparameters from the original network architec-
ture repository. The only deviation is the number of epochs which we reduced
from 70 to 30, since this is sufficient for our datasets to converge. The exact
hyperparameters are listed in Table Al.

C Additional Results

Below we present additional results. First, we list more regression results with
the complementing scatter plots of Figure 1 (potassium and calcium) in Fig-
ure A4 (creatinine and sodium). Further we have a detailed performance table
(more detailed than Table 3) for all electrolytes in Table A2 for the random
test set and in Table A3 for the temporal test set. No significant difference in
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performance between the test sets is observed which shows that our model is
robust to shift and trends over time.

Second, we list more results for classification and ordinal regression. In Fig-
ure A5 we show the MAE for potassium and calcium which complements Fig-
ure 3 that shows the Macro ROC. Figure A6 complements the electrolytes by
showing the Macro ROC and MAE for the other electrolytes (creatinine and
sodium).

Third, we show additional results for probabilistic regression. Figure A7 gives
the calibration plot for potassium. The tables in Table A4 and Table A5 con-
tain numeric details about the sparsification plot for more uncertainties, and the
correlation between MSE and the variance to quantify the uncertainty calibra-
tion. Table A6 lists the results of the OOD experiments. While the experiments
for the SNR are expected (larger MAE and uncertainties for lower SNR), the
results for masking are not as clear. While the MAE still increases, notably, es-
pecially the epistemic ensemble uncertainty decreases. This means that there
is less variance in the mean predictions between the different ensemble mem-
bers. Finally, Figure A8, Figure A9 and Figure A10 yield the results for the
remaining electrolytes that were previously shown for potassium alone.

Pcreatinine Sodium
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233.3 1 150 4

-::.:Hlersu..'.. )

116.7 4 . N 130 -

Predicted concentration mmol/I

0.0

T T 110 T T
0.0 116.7 233.3 350.0 110 130 150 170

Target concentration mmol/l Target concentration mmol/l

Figure A4: Regression scatter plot: Same as Figure 1, but for sodium and creatinine.

Table A2: Regression performance on the random test dataset: Table shows metrics
for different electrolytes of the regression models from Section 6.1. Target variance
refers to the variance of the dataset and therefore yields a worst case MSE performance
(since a model with that MSE just predicts the mean of the dataset).

Electrolyte MSE (sd) MAE (sd) Target variance normalized MSE (sd)
Potassium 0.1524 (0.0259) 0.2846 (0.0152) 0.2158 0.6013 (0.1021)
Calcium 0.0148 (0.0002) 0.0877 (0.0005) 0.0159 0.8625 (0.0088)
Sodium 12.5933 (0.1108) 2.5123 (0.0156) 13.1026 0.8445 (0.0074)
Creatinine 3719.8727 (86.0351) 26.6929 (1.118) 4074.4715 0.7097 (0.0164)
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Table A3: Regression performance on the temporal test dataset: Table shows metrics
for different electrolytes of the regression models from Section 6.1. Target variance
has same the meaning as in Table A2.

Electrolyte MSE (sd) MAE (sd) Target variance normalized MSE (sd)
Potassium 0.1319 (0.0171) 0.262 (0.0127) 0.1987 0.5203 (0.0675)
Calcium 0.0201 (< 0.0001) 0.1059 (0.0003) 0.0167 1.1742 (0.0028)
Sodium 12.0118 (0.084) 2.3903 (0.0093) 12.7672 0.8055 (0.0056)
Creatinine 2973.3104 (156.24) 24.5017 (1.2979) 3370.132 0.5673 (0.0298)
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Figure AS: Classification (C) and Ordinal regression (O) MAE: Similar to Figure 3,
we plot the MAE against the number of classes. The dashed line is the MAE of the
corresponding deep direct regression model.
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Figure A6: Classification (C) and Ordinal (O) regression: Same plot as Figure 3 and
Figure A5 but for creatinine and sodium (only using 4 seeds for shown mean and sd).

VIII-28



Aleatoric gaussian Epistemic laplace

2.0 5 2.0
.5 1.5 1 . S . .5 1.5 1
= =
< <
2 2
< 3
- ~ 1.0+
z z
] ]
= =1 .
E E
@ @ 0.5
00 T T T .
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Absolut error Absolut error
Epistemic ensemble
2.0 < 0.350
epistemic Ensemble
0.325 1 — epistemic Laplace
f=} = — 3 < aQie
g g 0.300 - aleatoric Gaussian
= 5] —— Gaussian + Ensemble
E :g 0.275 1 —— Gaussian + Laplace
) 2
= = 0.250 1
= g
g g
& = 0.225 4
0.200 +
T T T T
0.0 0.5 1.0 1.5 2.0 0.2 0.4 0.6 0.8 1.0
Absolut error % of data

Figure A7: Calibration plot, potassium: Top row and bottom left: calibration plots
as standard deviation vs. absolute error (to have the same units) for different uncer-
tainties. Colours indicate frequency by a fitted Gaussian kernel density estimate. A
perfectly calibrated model would follow the diagonal. Bottom right: sparsification
plot with more results than in the main paper.

Table A4: Sparsification against MAE: Numbers in columns show different levels of
sparsification (in per cent), and the corresponding row shows MAE values. This table
gives the numeric values of the bottom right plot of Figure A7.

25 50 75 100
Aleatoric Gaussian 0213 (0.007)  0.228 (0.008)  0.250 (0.009)  0.283 (0.009)
Epistemic ensemble 0.235(0.006)  0.246 (0.009)  0.259 (0.010)  0.283 (0.009)
Epistemic Laplace 0.249 (0.014)  0.260 (0.021)  0.271 (0.019)  0.283 (0.009)

Aleatoric Gaussian + Epistemic ensemble 0.211 (0.005)  0.227 (0.007)  0.249 (0.008)  0.283 (0.009)
Aleatoric Gaussian + Epistemic Laplace 0.212(0.007)  0.228 (0.008)  0.250 (0.009)  0.283 (0.009)

Epistemic ensemble of direct reg. 0.227 (NA) 0.238 (NA) 0.249 (NA) 0.274 (NA)
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Table AS: Correlation between MSE and Variance: we correlate the MSE with the
variance from different uncertainties. A correlation of 1 would indicate perfect cali-
bration.

Prediction

Gaussian standard deviation

Correlation

Aleatoric Gaussian
Epistemic ensemble
Epistemic Laplace

0.225 (0.066)
0.218 (0.010)
0.068 (0.034)

Aleatoric Gaussian + Epistemic ensemble
Aleatoric Gaussian + Epistemic Laplace

0.255 (0.039)
0.225 (0.066)

Epistemic ensemble of direct reg. 0.225 (N/A)
Calcium
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Figure A8: Top left: prediction vs target plot including various uncertainties. Top
right: sparsification plot. Botfom: Calibration plots between different uncertainties
and absolute error. The frequency of samples is highlighted by colour which is fitted

with

a Gaussian kernel density estimate.
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Table A6: OOD experiments: This is an extended table from Table 5. SNR X refers
to OOD experiments with varying SNR; Mask X refers to OOD experiments where X
per cent of the data is masked.

Aleatoric Epistemic Epistemic Epistemic
MAE Gaussian ensemble Laplace direct reg.

Baseline 0.304 (0.021) 0.389 (0.012) 0.121 (0.048) 0.022 (0.003) 0.099

SNR 10 0.330(0.016) 0399 (0.012)  0.149 (0.041)  0.028(0.009)  0.134
SNR | 0.368 (0.026)  0.480(0.078)  0.184(0.075)  0.049 (0.031)  0.154

Mask 25 0.300 (0.008)  0.386(0.015)  0.091(0.015)  0.022(0.001)  0.098
Mask 50  0.311(0.005)  0.388(0.008)  0.070(0.010)  0.020(0.002)  0.073
Mask 75 0.334(0.001)  0.385(0.004)  0.047(0.005)  0.018(0.002)  0.054
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Figure A9: Same results as Figure A8 but for sodium.

VIII-31



Paper VIII — ECG-Based Electrolyte Prediction

Pcreatinine
0.250
0.225
.
I
- % 0.200
2 E
Q
g é 0.175 1
& e
~ o
% 0.150 1
= epistemic Ensemble
0.125 epistemic Laplace
aleatoric Gaussian
T T 0100 T T T
4 6 0.25 0.50 0.75 1.00
% of data
1.250 1.250

Gaussian standard deviation
S
(=2}
[N)
ot
Gaussian + Ensemble sd
S
(=2}
[N)
ot

T T
0.000 0.625 1.250 0.000 0.625 1.250
Absolut error Absolut error

Figure A10: Same results as Figure A8 but for creatinine, in the log-transformed space
due to the heavily skewed distribution of creatinine.
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