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Thesis Overview

Supervised machine learning problems.

“Deep” parametric models, i.e. deep neural

networks (DNNs).

Regression (not classification).

• Predict continuous targets y ∈ Y = RK for

given inputs x ∈ X .

• Simple examples: Predict house prices, power

consumption, arrival times, product sales, 3D

object positions, volume/area measurements.

Most studied applications are taken from the

computer vision domain.
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Thesis Overview

8 included papers, divided into two different tracks.

Each track constitutes one main contribution.

Overarching ultimate goal: Develop deep regression

models which are accurate and reliable enough for

real-world deployment within safety-critical domains.

Main contribution 1: Formulation and development

of energy-based probabilistic regression.

• Paper I, II & III.

Main contribution 2: A critical evaluation of various

uncertainty estimation methods.

• Paper VI & VII.
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included papers was of course a big collaborative effort.

Supervisors: Thomas B. Schön and Martin Danelljan.

Other co-authors: Goutam Bhat, Radu Timofte,
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General Setting

Supervised machine learning problems:

1. Collect examples of how an input x relates to some target y .

2. Fit a model to the collected data {(xi , yi )}Ni=1.

3. Use this model to output predicted targets for other, previously unseen inputs x .

In a supervised regression problem, the task is to predict a continuous target

value y? ∈ Y = RK for any given input x? ∈ X . To solve this, we are also given

a training set of i.i.d. input-target pairs, D = {(xi , yi )}Ni=1, (xi , yi ) ∼ p(x , y).

The focus is often on the 1D case, i.e. when Y = R.

The input space X typically corresponds to the space of images.
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General Setting - DNNs

I view a Deep Neural Network (DNN) simply as a function fθ : X → O,

parameterized by θ ∈ RP . This function maps inputs x ∈ X to outputs fθ(x) ∈ O
in some output space O.

I also divide the DNN fθ into a backbone feature extractor, and one or more smaller

network heads. The feature extractor takes x as input and outputs a feature vector

g(x), which is then fed into the network heads, producing the final output fθ(x) ∈ O.

x

f(x)
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Deep Regression Approaches

Regression is a fundamental machine learning task, but remains somewhat

understudied compared to classification.

While classification problems generally are addressed using standardized target

representations and loss functions, these are not directly applicable to regression.

Therefore, a wide variety of regression approaches have been explored. There is no

broad consensus on how to construct deep regression models for best possible

accuracy, or how to represent and estimate the uncertainty in their predictions.
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Deep Regression Approaches - Direct Regression

The most common and straightforward approach, called direct regression, is to let the

DNN fθ directly output predicted targets, ŷ(x) = fθ(x).

x

f(x)

The DNN fθ is trained by minimizing e.g. the L2 loss over the training data,

J(θ) =
N∑
i=1

(
yi − fθ(xi )

)2
.
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Deep Regression Approaches - Direct Regression

From a probabilistic perspective, the choice of loss function corresponds to minimizing

the negative log-likelihood L(θ) =
∑N

i=1− log p(yi |xi ; θ) for a specific model p(y |x ; θ)

of the conditional target distribution p(y |x).

For example, the L2 loss `(fθ(xi ), yi ) =
(
yi − fθ(xi )

)2
is derived from a fixed-variance

Gaussian model, p(y |x ; θ) = N (y ; fθ(x), σ2I ). Similarly, the L1 loss can be derived

from a fixed-variance Laplace distribution.

By using the L2 or L1 loss, one is thus implicitly using quite restrictive models

p(y |x ; θ), which might fail to accurately represent the true target distribution p(y |x).
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Deep Regression Approaches - Probabilistic Regression

This probabilistic perspective can be extended to define a general regression approach:

Probabilistic Regression: Use a DNN fθ : X → O to specify a model p(y |x ; θ)

of the conditional target distribution, and minimize the corresponding negative

log-likelihood (NLL) L(θ) =
∑N

i=1− log p(yi |xi ; θ) in order to train the DNN.

A general 1D Gaussian model can be realized as p(y |x ; θ) = N
(
y ;µθ(x), σ2θ(x)

)
,

where the DNN outputs both a mean µθ(x) and variance σ2θ(x) for each input x .

x

μ(x)

σ(x)
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Deep Regression Approaches - Probabilistic Regression

Probabilistic Regression: Use a DNN fθ : X → O to specify a model p(y |x ; θ)

of the conditional target distribution, and minimize the corresponding negative

log-likelihood (NLL) L(θ) =
∑N

i=1− log p(yi |xi ; θ) in order to train the DNN.

x

μ(x)

σ(x)

For the Gaussian model, minimizing the NLL is equivalent to minimizing the loss,

J(θ) =
N∑
i=1

(
yi − µθ(xi )

)2
σ2θ(xi )

+ log σ2θ(xi ).
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Deep Regression Approaches - Probabilistic Regression

Probabilistic Regression: Use a DNN fθ : X → O to specify a model p(y |x ; θ)

of the conditional target distribution, and minimize the corresponding negative

log-likelihood (NLL) L(θ) =
∑N

i=1− log p(yi |xi ; θ) in order to train the DNN.

The Gaussian model p(y |x ; θ) = N
(
y ;µθ(x), σ2θ(x)

)
is however still quite restrictive,

as it is unable to capture e.g. multi-modal or asymmetric true distributions p(y |x).

To address this, mixture density networks (MDNs) or conditional VAEs (cVAEs) could

potentially be used, creating mixtures of a certain base distribution.

Or, energy-based models (EBMs) could be used to specify p(y |x ; θ). EBMs are not

restricted to the functional form of any specific distribution (e.g. Gaussian) and, in

contrast to MDNs and cVAEs, are not limited to distributions which are easy to sample.
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Track 1: Energy-Based Probabilistic Regression - Contributions

The first main contribution of the thesis is the formulation and development of

energy-based probabilistic regression in Paper I, II & III.

This is a general and conceptually simple regression framework with a clear probabilistic

interpretation, using EBMs to model the true conditional target distribution p(y |x).

The framework is formulated and initially evaluated in Paper I. A comprehensive study

of how the EBMs should be trained for best possible regression performance is then

conducted in Paper II, and some practical limitations of the approach are finally

addressed in Paper III.

The framework has been applied to a number of regression problems, demonstrating

particularly strong performance for 2D bounding box regression – improving the

state-of-the-art when applied to the task of visual tracking.
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Track 1: Energy-Based Probabilistic Regression - Background

Energy-based models have a rich history within machine learning.

An energy-based model (EBM) specifies a probability distribution p(x ; θ) over

x ∈ X directly via a parameterized scalar function fθ : X → R:

p(x ; θ) =
efθ(x)

Z (θ)
, Z (θ) =

∫
efθ(x̃)dx̃

By defining fθ(x) using a DNN, the EBM p(x ; θ) becomes expressive enough to learn

practically any distribution from observed data.

Drawback: The normalizing partition function Z (θ) =
∫
efθ(x̃)dx̃ is intractable, which

complicates evaluating or sampling from the EBM p(x ; θ).
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Track 1: Energy-Based Probabilistic Regression - Formulation

Energy-Based Probabilistic Regression: train a DNN fθ : X × Y → R to

predict a scalar fθ(x , y), then model p(y |x) with the conditional EBM p(y |x ; θ):

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

y

x

f(x,y)
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Track 1: Energy-Based Probabilistic Regression - Example

Energy-Based Probabilistic Regression: train a DNN fθ : X × Y → R to

predict a scalar fθ(x , y), then model p(y |x) with the conditional EBM p(y |x ; θ):

p(y |x ; θ) =
efθ(x ,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x ,ỹ)dỹ .

The EBM p(y |x ; θ) can learn complex distributions p(y |x) directly from data:
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Track 1: Energy-Based Probabilistic Regression - Papers

I: Energy-Based Models for Deep Probabilistic Regression

Fredrik K. Gustafsson, Martin Danelljan, Goutam Bhat, Thomas B. Schön

The European Conference on Computer Vision (ECCV), 2020

II: How to Train Your Energy-Based Model for Regression

Fredrik K. Gustafsson, Martin Danelljan, Radu Timofte, Thomas B. Schön

The British Machine Vision Conference (BMVC), 2020

III: Learning Proposals for Practical Energy-Based Regression

Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Schön

The International Conference on Artificial Intelligence and Statistics (AISTATS), 2022

IV: Accurate 3D Object Detection using Energy-Based Models

Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Schön

Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), 2021

V: Deep Energy-Based NARX Models

Johannes Hendriks, Fredrik K. Gustafsson, Antônio H. Ribeiro, Adrian Wills, Thomas B. Schön

The 19th IFAC Symposium on System Identification (SYSID), 2021
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Track 1: Energy-Based Probabilistic Regression - Paper I

I: Energy-Based Models for Deep Probabilistic Regression

Fredrik K. Gustafsson, Martin Danelljan, Goutam Bhat, Thomas B. Schön

The European Conference on Computer Vision (ECCV), 2020
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Track 1: Energy-Based Probabilistic Regression - Paper II

II: How to Train Your Energy-Based Model for Regression

Fredrik K. Gustafsson, Martin Danelljan, Radu Timofte, Thomas B. Schön

The British Machine Vision Conference (BMVC), 2020
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Track 1: Energy-Based Probabilistic Regression - Paper III

III: Learning Proposals for Practical Energy-Based Regression

Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Schön

The International Conference on Artificial Intelligence and Statistics (AISTATS), 2022

y

x

f(x,y)

g(x)
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Track 1: Energy-Based Probabilistic Regression - Paper IV

IV: Accurate 3D Object Detection using Energy-Based Models

Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Schön

Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), 2021

SA-SSD Pool f(x,y)

y
x
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Track 1: Energy-Based Probabilistic Regression - Paper V

V: Deep Energy-Based NARX Models

Johannes Hendriks, Fredrik K. Gustafsson, Antônio H. Ribeiro, Adrian Wills, Thomas B. Schön

The 19th IFAC Symposium on System Identification (SYSID), 2021

Chapter 1. Introduction

Paper V

Deep Energy-Based NARX Models. Johannes Hendriks, Fredrik K. Gustafs-
son, Antônio Ribeiro, Adrian Wills, Thomas B. Schön. The 19th IFAC Sympo-
sium on System Identification (SYSID), 2021.

(a) Gaussian. (b) Bimodal Gaussian.

(c) Cauchy. (d) Dependent variance
Gaussian.

Summary We study the problem of learning nonlinear ARX models based
on observed input-output data. In particular, we want to learn a conditional
distribution of the current output based on a finite window of past inputs and
outputs. To achieve this, we consider the use of energy-based models. This
energy-based model relies on a general function to describe the distribution,
and here we consider a neural network for this purpose. The primary benefit
of our approach is that it is capable of learning both simple and highly complex
noise models, which we demonstrate on simulated and experimental data.

Statement of Contribution Johannes came up with the underlying idea of
the paper, conducted all experiments and did the majority of the writing. I dis-
cussed the methods and experiments in meetings with Johannes and the other
authors. I contributed to the writing of Section 3, and provided detailed feed-
back on the rest of the manuscript.

22
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Track 2: Uncertainty Estimation Methods - Contributions

The second main contribution of the thesis is the critical evaluation of various

uncertainty estimation methods conducted in Paper VI & VII.

A general introduction to the problem of estimating the predictive uncertainty of deep

models is provided in Paper VI, together with an extensive comparison of the two

popular methods ensembling and MC-dropout.

In Paper VII, ensembling and other uncertainty estimation methods are then further

evaluated, specifically examining their reliability under real-world distribution shifts.

This evaluation uncovers important limitations of current methods and serves as a

challenge to the research community. It demonstrates that more work is required in

order to develop truly reliable uncertainty estimation methods for regression.
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Track 2: Uncertainty Estimation Methods - Background

DNNs fθ : X → O have become the go-to approach within computer vision and many

other domains due to their impressive predictive power. However, they generally fail to

properly capture the uncertainty inherent in their predictions.

Bayesian deep learning is one approach that aims to address this issue in a principled

manner. It deals with predictive uncertainty by decomposing it into the distinct types

of aleatoric and epistemic uncertainty.

Aleatoric uncertainty captures inherent and irreducible ambiguity in the inputs x .

Epistemic uncertainty accounts for uncertainty in the DNN model parameters θ. More

broadly, it is reducible uncertainty related to a lack of knowledge (“uncertainty due to

things one could in principle know but does not in practice”).
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Track 2: Uncertainty Estimation Methods - Aleatoric Uncertainty

Input-dependent aleatoric uncertainty arises whenever the target y is expected to be

inherently more uncertain for some inputs x than others. This is true e.g. in

automotive 3D object detection, where it is inherently more difficult to estimate the

3D position and size of distant or partially occluded vehicles.
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Track 2: Uncertainty Estimation Methods - Aleatoric Uncertainty

To estimate input-dependent aleatoric uncertainty, the DNN fθ : X → O can be used

to specify a model p(y |x ; θ) of the conditional target distribution.

For example, a Gaussian model can be used, p(y |x ; θ) = N
(
y ;µθ(x), σ2θ(x)

)
.

x

μ(x)

σ(x)

The mean can then be taken as a prediction, ŷ(x) = µθ(x), whereas the variance σ2θ(x)

naturally can be interpreted as a measure of aleatoric uncertainty for this prediction.
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Track 2: Uncertainty Estimation Methods - Epistemic Uncertainty

Using DNNs to specify models p(y |x ; θ) of the conditional target distribution does

however not capture epistemic uncertainty, as information about the uncertainty in

the model parameters θ is disregarded.

Large epistemic uncertainty is present whenever a large set of model parameters

explains the given training data (approximately) equally well.

This is often the case for DNNs, since the

corresponding optimization landscapes are

highly multi-modal.

Disregarding the epistemic model uncertainty

can lead to highly confident yet incorrect

predictions, especially for inputs x which are

not well-represented by the training data.
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Track 2: Uncertainty Estimation Methods - Epistemic Uncertainty

Epistemic uncertainty can be estimated in a principled manner by performing

approximate Bayesian inference.

Instead of just finding a single point estimate θ̂ of the model parameters θ, by

minimizing the negative log-likelihood L(θ) =
∑N

i=1− log p(yi |xi ; θ) over the training

set D = {(xi , yi )}Ni=1, Bayesian inference entails estimating the full posterior

distribution p(θ|D).

The posterior p(θ|D) is obtained from the data likelihood
∏N

i=1 p(yi |xi ; θ) and a

chosen prior p(θ) by applying Bayes’ theorem, p(θ|D) ∝
∏N

i=1 p(yi |xi ; θ)p(θ).
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Track 2: Illustrative Example

Let us consider the following simple 1D regression problem:

p(y |x) = N
(
y ;µ(x), σ2(x)

)
, µ(x) = sin(x), σ(x) =

0.15

1 + e−x
.

(a) True data generator p(y |x).
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(b) Training dataset {(xi , yi )}1000i=1 . 27/33



Track 2: Illustrative Example - Direct Regression

A DNN fθ trained to directly output predicted targets, ŷ(x) = fθ(x), is able to

accurately regress the mean µ(x) = sin(x) for x ∈ [−3, 3]. However, this model fails to

capture any notion of uncertainty.

6 4 2 0 2 4 6
4

3

2

1

0

1

2

3

4
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Track 2: Illustrative Example - Gaussian Model, NLL

Instead, the DNN fθ can be used to specify a Gaussian model p(y |x ; θ) =

= N
(
y ;µθ(x), σ2θ(x)

)
, trained by minimizing the NLL L(θ). The model closely

matches the true p(y |x) for x ∈ [−3, 3], accounting for aleatoric uncertainty.

6 4 2 0 2 4 6
4

3

2

1

0

1

2

3

4 For inputs |x | > 3 not seen during

training, however, the estimated mean

µθ(x) deviates significantly from the

true µ(x) = sin(x), while the estimated

uncertainty σ2θ(x) remains very small.

That is, the model becomes

overconfident for inputs |x | > 3.
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Track 2: Illustrative Example - Gaussian Model, Bayesian Inference

The Gaussian DNN model p(y |x ; θ) = N
(
y ;µθ(x), σ2θ(x)

)
can instead be estimated

via approximate Bayesian inference, in order to account for both aleatoric and

epistemic uncertainty.

6 4 2 0 2 4 6
4

3

2

1

0

1

2

3

4 The model now predicts a more

reasonable uncertainty σ2θ(x) in the

region with no available training data.

While the estimated mean µθ(x) still

deviates from the true µ(x) = sin(x)

for |x | > 3, the uncertainty σ2θ(x) also

increases accordingly – the model does

not become overconfident.
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Track 2: Uncertainty Estimation Methods - Papers

VI: Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer Vision

Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Schön

Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), 2020

VII: How Reliable is Your Regression Model’s Uncertainty Under Real-World Distribution Shifts?

Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Schön

Transactions on Machine Learning Research (TMLR), 2023

VIII: ECG-Based Electrolyte Prediction: Evaluating Regression and Probabilistic Methods

Philipp Von Bachmann, Daniel Gedon, Fredrik K. Gustafsson, Antônio H. Ribeiro, Erik Lampa, Stefan

Gustafsson, Johan Sundström, Thomas B. Schön

In Preparation, 2023
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Track 2: Uncertainty Estimation Methods - Paper VI

VI: Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer Vision

Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Schön

Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), 2020
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Track 2: Uncertainty Estimation Methods - Paper VII

VII: How Reliable is Your Regression Model’s Uncertainty Under Real-World Distribution Shifts?

Fredrik K. Gustafsson, Martin Danelljan, Thomas B. Schön

Transactions on Machine Learning Research (TMLR), 2023
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Track 2: Uncertainty Estimation Methods - Paper VIII

VIII: ECG-Based Electrolyte Prediction: Evaluating Regression and Probabilistic Methods

Philipp Von Bachmann, Daniel Gedon, Fredrik K. Gustafsson, Antônio H. Ribeiro, Erik Lampa, Stefan

Gustafsson, Johan Sundström, Thomas B. Schön

In Preparation, 2023
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Conclusion

Overarching ultimate goal: Develop deep regression models which are accurate and

reliable enough for real-world deployment within safety-critical domains.

The first main contribution of the thesis is the formulation and development of

energy-based probabilistic regression in Paper I, II & III.

• The framework is applied to a number of regression problems and demonstrates

particularly strong performance for 2D bounding box regression, improving the

state-of-the-art when applied to visual tracking.

The second main contribution of the thesis is the critical evaluation of various

uncertainty estimation methods conducted in Paper VI & VII.

• This evaluation uncovers important limitations of current methods and serves as a

challenge to the research community. It demonstrates that more work is required

in order to develop truly reliable uncertainty estimation methods for regression.
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Fredrik K. Gustafsson
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